RELATIVISTIC POLARON WITHOUT CUTOFFS IN 2 SPACE DIMENSIONS

被引:1
|
作者
SLOAN, A
机构
关键词
D O I
10.1090/S0002-9904-1972-12920-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:407 / &
相关论文
共 50 条
  • [41] KINK SOLUTIONS IN 2 SPACE DIMENSIONS
    HONERKAMP, J
    PATANI, A
    SCHLINDWEIN, M
    SHAFI, Q
    LETTERE AL NUOVO CIMENTO, 1976, 15 (04): : 97 - 100
  • [42] QUANTUM PHASE-SPACE FOR AN IDEAL RELATIVISTIC GAS IN D-SPATIAL DIMENSIONS .2. ASYMPTOTIC FORMULAS
    HAYASHI, M
    MENDOZA, HV
    REVISTA MEXICANA DE FISICA, 1992, 38 (04) : 532 - 542
  • [43] Radially symmetric solutions of the ultra-relativistic Euler equations in several space dimensions
    Kunik, Matthias
    Kolb, Adrian
    Mueller, Siegfried
    Thein, Ferdinand
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
  • [44] On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions
    Glassey, RT
    Schaeffer, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (03) : 143 - 157
  • [45] Two relativistic boson models in the Schrodinger picture in three space-time dimensions
    Frochaux, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (06) : 2979 - 3000
  • [46] Two relativistic boson models in the Schroedinger picture in three space-time dimensions
    Frochaux, E.
    Journal of Mathematical Physics, 37 (06):
  • [47] Ground state energy of the polaron in the relativistic quantum electrodynamics
    Sasaki, I
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)
  • [48] Modeling geomagnetic cutoffs for space weather applications
    Kress, B. T.
    Hudson, M. K.
    Selesnick, R. S.
    Mertens, C. J.
    Engel, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (07) : 5694 - 5702
  • [49] GEOMAGNETIC CUTOFFS - A REVIEW FOR SPACE DOSIMETRY APPLICATIONS
    SMART, DF
    SHEA, MA
    LIFE SCIENCES AND SPACE RESEARCH XXV(2): RADIATION BIOLOGY, 1994, 14 (10): : 787 - 796
  • [50] QUANTUM PHASE-SPACE FOR AN IDEAL RELATIVISTIC GAS IN D-SPATIAL DIMENSIONS
    HAYASHI, M
    MENDOZA, HV
    REVISTA MEXICANA DE FISICA, 1992, 38 (01) : 81 - 91