On finite groups with Hall normally embedded Schmidt subgroups

被引:0
|
作者
Kniahina, Viktoryia N. [1 ]
Monakhov, Victor S. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Sovetskaya Str 104, Gomel 246019, BELARUS
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
finite group; Hall subgroup; normal subgroup; derived subgroup; nilpotent subgroup;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a finite group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [31] On finite groups with σ-subnormal Schmidt subgroups
    Al-Sharo, Khaled A.
    Skiba, Alexander N.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4158 - 4165
  • [32] Hall subgroups of finite groups
    Revin, Danila Olegovitch
    Vdovin, Evgenii Petrovitch
    ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 229 - +
  • [33] Finite groups with Hall π-subgroups
    Vedernikov, V. A.
    SBORNIK MATHEMATICS, 2012, 203 (03) : 326 - 350
  • [34] ℱƬ-Embedded and ℱƬΦ-Embedded Subgroups of Finite Groups
    X. Chen
    W. Guo
    A. N. Skiba
    Algebra and Logic, 2015, 54 : 226 - 244
  • [35] Finite Groups with Generalized Subnormal Schmidt Subgroups
    F. Sun
    X. Yi
    S. F. Kamornikov
    Siberian Mathematical Journal, 2021, 62 : 364 - 369
  • [36] Finite groups with a given set of Schmidt subgroups
    Monakhov, VS
    MATHEMATICAL NOTES, 1995, 58 (5-6) : 1183 - 1186
  • [37] FINITE GROUPS WITH GENERALIZED SUBNORMAL SCHMIDT SUBGROUPS
    Sun, F.
    Yi, X.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 364 - 369
  • [38] On finite groups with generalized σ-subnormal Schmidt subgroups
    Hu, Bin
    Huang, Jianhong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3127 - 3134
  • [39] Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups
    V. S. Monakhov
    A. A. Trofimuk
    Siberian Mathematical Journal, 2018, 59 : 922 - 930
  • [40] Properties of subgroups of solvable groups that imply they are normally embedded
    Feldman, A
    GLASGOW MATHEMATICAL JOURNAL, 2003, 45 : 45 - 52