UNIVERSAL PROPERTIES OF THE WAVE-FUNCTIONS OF FRACTIONAL QUANTUM HALL SYSTEMS

被引:68
|
作者
LOPEZ, A
FRADKIN, E
机构
[1] Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
关键词
D O I
10.1103/PhysRevLett.69.2126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the wave functions of the fluid ground states of fractional quantum Hall systems, in the thermodynamic limit, are universal at long distances and that they have a generalized Laughlin form. This universality is a consequence of the analytic properties of the equal-time density correlation functions at long distances. The correlation functions calculated from the field theoretic approach to the fractional quantum Hall effect have the correct analytic properties and the wave function calculated in the Gaussian approximation becomes exact in the asymptotic limit.
引用
收藏
页码:2126 / 2129
页数:4
相关论文
共 50 条
  • [41] MONTE-CARLO EVALUATION OF TRIAL WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTIZED HALL-EFFECT - SPHERICAL GEOMETRY
    MORF, R
    HALPERIN, BI
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 68 (2-3): : 391 - 406
  • [42] Quantum Hall wave functions on the torus
    Hermanns, M.
    Suorsa, J.
    Bergholtz, E. J.
    Hansson, T. H.
    Karlhede, A.
    PHYSICAL REVIEW B, 2008, 77 (12)
  • [43] MONTE-CARLO EVALUATION OF TRIAL WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTIZED HALL-EFFECT - DISK GEOMETRY
    MORF, R
    HALPERIN, BI
    PHYSICAL REVIEW B, 1986, 33 (04): : 2221 - 2246
  • [44] Spin in fractional quantum Hall systems
    Vyborny, Karel
    ANNALEN DER PHYSIK, 2007, 16 (02) : 87 - 165
  • [45] Conformal field theory approach to parton fractional quantum Hall trial wave functions
    Henderson, Greg J.
    Sreejith, G. J.
    Simon, Steven H.
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [46] Conformal field theory approach to bulk wave functions in the fractional quantum Hall effect
    Flohr, M
    Osterloh, K
    PHYSICAL REVIEW B, 2003, 67 (23)
  • [47] Entanglement subspaces, trial wave functions, and special Hamiltonians in the fractional quantum Hall effect
    Jackson, T. S.
    Read, N.
    Simon, S. H.
    PHYSICAL REVIEW B, 2013, 88 (07):
  • [48] Model Wave Functions for the Collective Modes and the Magnetoroton Theory of the Fractional Quantum Hall Effect
    Yang, Bo
    Hu, Zi-Xiang
    Papic, Z.
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [49] Universal quantum computation with the ν=5/2 fractional quantum Hall state
    Bravyi, S
    PHYSICAL REVIEW A, 2006, 73 (04):
  • [50] Spin-singlet Gaffnian wave function for fractional quantum Hall systems
    Davenport, Simon C.
    Ardonne, Eddy
    Regnault, Nicolas
    Simon, Steven H.
    PHYSICAL REVIEW B, 2013, 87 (04):