COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING

被引:7
|
作者
DROZDZ, S [1 ]
OKOLOWICZ, J [1 ]
SROKOWSKI, T [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST KERNPHYS, W-5170 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.48.4851
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chaotic scattering at different projectile incident energies is studied for a model which involves a two-body van der Waals-type interaction. At higher energies one finds characteristics typical for hyperbolic chaotic scattering. For sufficiently low energies hyperbolic and nonhyperbolic chaotic scattering are found to coexist at the same energy. The mechanism of this coexistence is discussed in terms of the Lyapunov exponent and the fractal dimension. Arguments are put forward for an increase in the fractal dimension of the set of singularities leading to nonhyperbolic chaotic scattering.
引用
收藏
页码:4851 / 4854
页数:4
相关论文
共 50 条
  • [41] Adaptive synchronization of fractional-order quadratic chaotic flows with nonhyperbolic equilibrium
    Mofid, Omid
    Mobayen, Saleh
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (21) : 4971 - 4987
  • [42] Hyperbolic diffusion in chaotic systems
    P. Borys
    Z. J. Grzywna
    J. Łuczka
    The European Physical Journal B, 2011, 83
  • [43] Topological and Ergodic Aspects of Partially Hyperbolic Diffeomorphisms and Nonhyperbolic Step Skew Products
    Diaz, L. J.
    Gelfert, K.
    Rams, M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 (01) : 98 - 115
  • [44] Analysis, Stabilization, and DSP-Based Implementation of a Chaotic System with Nonhyperbolic Equilibrium
    Yang, Xuan-Bing
    He, Yi-Gang
    Li, Chun-Lai
    Liu, Chang-Qing
    COMPLEXITY, 2020, 2020
  • [45] Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise
    Anishchenko, VS
    Vadivasova, TE
    Kopeikin, AS
    Kurths, J
    Strelkova, GI
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036206
  • [46] Noise-resistant chaotic synchronization of nonhyperbolic maps via information transmission
    Dmitriev, AS
    Hasler, M
    Kassian, GA
    Khilinsk, AD
    SCS 2003: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 5 - 8
  • [47] Coexistence of inertial competitors in chaotic flows
    Benczik, I. J.
    Karolyi, G.
    Scheuring, I.
    Tel, T.
    CHAOS, 2006, 16 (04)
  • [48] Chaotic flow:: The physics of species coexistence
    Károlyi, G
    Péntek, A
    Scheuring, I
    Tél, T
    Toroczkai, Z
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) : 13661 - 13665
  • [49] On the influence of noise on the coexistence of chaotic attractors
    Argyris, J
    Andreadis, I
    CHAOS SOLITONS & FRACTALS, 2000, 11 (06) : 941 - 946
  • [50] A New Chaotic System with Only Nonhyperbolic Equilibrium Points: Dynamics and Its Engineering Application
    Zolfaghari-Nejad, Maryam
    Charmi, Mostafa
    Hassanpoor, Hossein
    COMPLEXITY, 2022, 2022