ON PRODUCT PARTITIONS OF INTEGERS

被引:17
|
作者
HARRIS, C
SUBBARAO, MV
机构
[1] SAN DIEGO STATE UNIV,DEPT MATH,SAN DIEGO,CA 92182
[2] UNIV ALBERTA,DEPT MATH,EDMONTON T6G 2G1,ALBERTA,CANADA
关键词
D O I
10.4153/CMB-1991-076-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p*(n) denote the number of product partitions, that is, the number of ways of expressing a natural number n > 1 as the product of positive integers greater-than-or-equal-to 2, the order of the factors in the product being irrelevant, with p*(1) = 1. For any integer d greater-than-or-equal-to 1 let d(i) = d1/i if d is an i(th) power, and = 1, otherwise, and let dBAR = PI-i = 1 infinity d(i). Using a suitable generating function for p*(n) we prove that PI-d/n d(p*(n/d))BAR = n(p*)(n).
引用
收藏
页码:474 / 479
页数:6
相关论文
共 50 条