ON PRODUCT PARTITIONS OF INTEGERS

被引:17
|
作者
HARRIS, C
SUBBARAO, MV
机构
[1] SAN DIEGO STATE UNIV,DEPT MATH,SAN DIEGO,CA 92182
[2] UNIV ALBERTA,DEPT MATH,EDMONTON T6G 2G1,ALBERTA,CANADA
关键词
D O I
10.4153/CMB-1991-076-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p*(n) denote the number of product partitions, that is, the number of ways of expressing a natural number n > 1 as the product of positive integers greater-than-or-equal-to 2, the order of the factors in the product being irrelevant, with p*(1) = 1. For any integer d greater-than-or-equal-to 1 let d(i) = d1/i if d is an i(th) power, and = 1, otherwise, and let dBAR = PI-i = 1 infinity d(i). Using a suitable generating function for p*(n) we prove that PI-d/n d(p*(n/d))BAR = n(p*)(n).
引用
收藏
页码:474 / 479
页数:6
相关论文
共 50 条
  • [1] ADDITIVE PARTITIONS OF INTEGERS
    ALLADI, K
    ERDOS, P
    HOGGATT, VE
    DISCRETE MATHEMATICS, 1978, 22 (03) : 201 - 211
  • [2] An identity for partitions of integers
    Andrews, G
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (05): : 477 - 478
  • [3] An Efficient Representation of Partitions of Integers
    Sumigawa, Kentaro
    Sadakane, Kunihiko
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 361 - 373
  • [4] On intersecting properties of partitions of integers
    Hegyvári, N
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 319 - 323
  • [5] Asymptotic prime partitions of integers
    Bartel, Johann
    Bhaduri, R. K.
    Brack, Matthias
    Murthy, M. V. N.
    PHYSICAL REVIEW E, 2017, 95 (05) : 052108
  • [6] ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS
    HOGGATT, VE
    FIBONACCI QUARTERLY, 1980, 18 (03): : 220 - 226
  • [7] Some partitions of positive integers
    Discrete Math, 1-3 (267-271):
  • [8] PARTITIONS AND SUMS AND PRODUCTS OF INTEGERS
    HINDMAN, N
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A565 - A565
  • [9] Some partitions of positive integers
    Treml, M
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 267 - 271
  • [10] PARTITIONS AND SUMS OF INTEGERS WITH REPETITION
    HINDMAN, N
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (01) : 19 - 32