Clean energy investment scenarios using the Bayesian network

被引:10
|
作者
Daim, Tugrul [1 ]
Kayakutlu, Gulgun [2 ]
Suharto, Yulianto [1 ]
Bayram, Andyagmur [2 ]
机构
[1] Portland State Univ, Dept Engn & Technol Management, Portland, OR USA
[2] Istanbul Tech Univ, Dept Ind Engn, Istanbul, Turkey
关键词
Bayes network; clean energy; scenario analysis;
D O I
10.1080/14786451.2012.744311
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Clean energy investment decisions are getting more difficult to make due to public reactions. In order to support the policies in the field, analysis of the positive conditions is needed. This research aims to construct the positive scenarios for nuclear energy and renewable energy investments in the state of Oregon, USA. The Bayesian network technique will be used to create the scenarios. Oregon has a wide range of renewable energies; hence, investment is becoming more complex. Criteria affecting the decisions are taken from the literature, but were reviewed with energy authorities in Oregon in order to define the interactions.
引用
收藏
页码:400 / 415
页数:16
相关论文
共 50 条
  • [41] Clean energy and fintech: A scientometric study on spillovers and hedging in investment portfolios
    Lopez-Penabad, Maria Celia
    Iglesias-Casal, Ana
    Maside-Sanfiz, Jose Manuel
    Ben Larbi, Ons
    ENERGY STRATEGY REVIEWS, 2025, 59
  • [42] Energy water nexus under energy mix scenarios using input output and ecological network analyses
    Wang, Saige
    Fath, Brian
    Chen, Bin
    APPLIED ENERGY, 2019, 233 : 827 - 839
  • [43] Probabilistic Modeling of Maritime Accident Scenarios Leveraging Bayesian Network Techniques
    Liao, Shiguan
    Weng, Jinxian
    Zhang, Zhaomin
    Li, Zhuang
    Li, Fang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (08)
  • [44] Bayesian network analysis of accident risk in information-deficient scenarios
    Enrique Martin, Jose
    Taboada-Garcia, Javier
    Gerassis, Saki
    Saavedra, Angeles
    Martinez-Alegria, Roberto
    REVISTA DE LA CONSTRUCCION, 2017, 16 (03): : 439 - 446
  • [45] Industrial heat defossilization: A comparative analysis of waste incineration and clean energy scenarios
    Chen, Wen
    Ohnishi, Satoshi
    Maki, Seiya
    Kawai, Kosuke
    Sun, Lu
    Dong, Huijuan
    Dong, Liang
    Dou, Yi
    Qian, Tana
    Hijioka, Yasuaki
    Nakajima, Kenichi
    Fujii, Minoru
    JOURNAL OF CLEANER PRODUCTION, 2025, 491
  • [46] Estimating Occupancy from Measurements and Knowledge Using the Bayesian Network for Energy Management
    Amayri, Manar
    Ploix, Stephane
    Kazmi, Hussain
    Quoc-Dung Ngo
    Safadi, E. L. Abed E. L.
    JOURNAL OF SENSORS, 2019, 2019
  • [47] Probabilistic Availability Analysis for Marine Energy Transfer Subsystem Using Bayesian Network
    Yang, Yi
    Sorensen, John Dalsgaard
    ENERGIES, 2020, 13 (19)
  • [48] Bayesian comparison of interacting modified holographic Ricci dark energy scenarios
    Antonella Cid
    Carlos Rodriguez-Benites
    Mauricio Cataldo
    Gonzalo Casanova
    The European Physical Journal C, 2021, 81
  • [49] Bayesian comparison of interacting modified holographic Ricci dark energy scenarios
    Cid, Antonella
    Rodriguez-Benites, Carlos
    Cataldo, Mauricio
    Casanova, Gonzalo
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (01):
  • [50] Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects
    Toroody A.B.
    Abaiee M.M.
    Gholamnia R.
    Ketabdari M.J.
    Journal of Marine Science and Application, 2016, 15 (3) : 250 - 259