GLOBAL ESTIMATES FOR THE SCHRODINGER-EQUATION

被引:10
|
作者
BENARTZI, M
机构
[1] Institute of Mathematics, Hebrew University, Jerusalem
关键词
D O I
10.1016/0022-1236(92)90113-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u = u(x, t) be a solution to the IVP for the Schrödinger equation iu1 = (-Δ + V(x))u ≡ Hu, u(x, 0) = u0(x) ε{lunate} PacL2(Rn) (Pac is the projection on the absolutely continuous subspace of H). Assume that for some ε > 0 the multiplication operator (1+|x|)1+iV(x):H1-ε(Rn) → L2(Rn) is bounded. Then u(x, t) = u1(x, t) + u2(x, t) where, for every s > 1 2, ∫ R ∫ Rn (1 + |x|2)-s|(1+H) 1 4u1(x,t)|2 dxdt ≤ C {norm of matrix}u0{norm of matrix}L2, and for every integer j, sup{norm of matrix}(I + H)ju2(·, t){norm of matrix}L ≤ Cj {norm of matrix} U0{norm of matrix}L tε{lunate}R. © 1992.
引用
收藏
页码:362 / 368
页数:7
相关论文
共 50 条
  • [21] ON A RELATIVISTIC NONLINEAR SCHRODINGER-EQUATION
    DEBOUARD, A
    HAYASHI, N
    SAUT, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (02): : 175 - 178
  • [22] ASSUMPTIONS IMPLYING THE SCHRODINGER-EQUATION
    JORDAN, TF
    AMERICAN JOURNAL OF PHYSICS, 1991, 59 (07) : 606 - 608
  • [23] SHOOTING METHODS FOR THE SCHRODINGER-EQUATION
    KILLINGBECK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06): : 1411 - 1417
  • [24] RELATIVISTIC NATURE OF THE SCHRODINGER-EQUATION
    KOWALSKI, FV
    PHYSICS LETTERS A, 1993, 182 (01) : 23 - 27
  • [25] KAC FUNCTIONAL AND SCHRODINGER-EQUATION
    CHUNG, KL
    VARADHAN, SRS
    STUDIA MATHEMATICA, 1980, 68 (03) : 249 - 260
  • [26] ON THE SCHRODINGER-EQUATION WITH A GAUSSIAN POTENTIAL
    COHEN, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03): : L101 - L104
  • [27] RELATIVISTICALLY CORRECTED SCHRODINGER-EQUATION
    KISSELPHILLIP, M
    SCHWARZ, WHE
    PHYSICAL REVIEW A, 1988, 38 (12): : 6027 - 6033
  • [28] SCHRODINGER-EQUATION FOR BOSONS AND FERMIONS
    KANIADAKIS, G
    PHYSICS LETTERS A, 1995, 206 (3-4) : 137 - 140
  • [29] GALILEAN COVARIANCE AND THE SCHRODINGER-EQUATION
    OMOTE, M
    KAMEFUCHI, S
    TAKAHASHI, Y
    OHNUKI, Y
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1989, 37 (12): : 933 - 950
  • [30] Dissipation in a Schrodinger-equation formalism
    Matulis, A.
    Anisimovas, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1520 - 1522