OPTICS OF NON-CENTERED SYSTEMS AS A PARAXIAL APPROXIMATION

被引:0
|
作者
PATRIKEEV, VS
机构
来源
OPTIKA I SPEKTROSKOPIYA | 1979年 / 46卷 / 02期
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:386 / 392
页数:7
相关论文
共 50 条
  • [21] MATHEMATICAL FORMALISM OF EXPANDED 3X3 MATRICES TO DESCRIBE NON-CENTERED OPTICAL-SYSTEMS
    VOLKOV, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1988, 31 (06): : 106 - 109
  • [22] Bias for the Trace of the Resolvent and Its Application on Non-Gaussian and Non-Centered MIMO Channels
    Zhang, Xin
    Song, Shenghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 2857 - 2876
  • [23] On non-centered maximal operators related to a non-doubling and non-radial exponential measure
    Nowak, Adam
    Sasso, Emanuela
    Sjogren, Peter
    Stempak, Krzysztof
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2887 - 2929
  • [24] A CLT FOR INFORMATION-THEORETIC STATISTICS OF NON-CENTERED GRAM RANDOM MATRICES
    Hachem, Walid
    Kharouf, Malika
    Najim, Jamal
    Silverstein, Jack W.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (02)
  • [25] Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees
    Goupell, Matthew J.
    Kan, Alan
    Litovsky, Ruth Y.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (02): : EL101 - EL107
  • [26] THE PARAXIAL APPROXIMATION, REVISITED
    Ivchenko, V
    REVISTA CUBANA DE FISICA, 2020, 37 (02): : 84 - 87
  • [27] DISCRETE PARAXIAL APPROXIMATION
    HILLION, P
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1978, 9 (04): : 243 - 250
  • [29] Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures
    Sjögren, P
    Soria, F
    ADVANCES IN MATHEMATICS, 2004, 181 (02) : 251 - 275
  • [30] Freeform optics design for extended sources in paraxial approximation exploiting the expectation maximization algorithm
    Voell, Annika
    Berens, Michael
    Wester, Rolf
    Buske, Paul
    Stollenwerk, Jochen
    Loosen, Peter
    OPTICS EXPRESS, 2020, 28 (24) : 37004 - 37014