On maximal and minimal linear matching property

被引:0
|
作者
Aliabadi, M. [1 ]
Darafsheh, M. B. [1 ]
机构
[1] Sharif Univ Technol, Dept Biol & Mat Sci, Tehran, Iran
来源
ALGEBRA & DISCRETE MATHEMATICS | 2013年 / 15卷 / 02期
关键词
Linear matching property; Algebraic number field; Field extension; Maximal linear matching property; Minimal linear matching property;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The matching basis in field extentions is introduced by S. Eliahou and C. Lecouvey in [2]. In this paper we define the minimal and maximal linear matching property for field extensions and prove that if K is not algebraically closed, then K has minimal linear matching property. In this paper we will prove that algebraic number fields have maximal linear matching property. We also give a shorter proof of a result established in [6] on the fundamental theorem of algebra.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [41] On Minimal and Maximal Suffixes of a Substring
    Babenko, Maxim
    Kolesnichenko, Ignat
    Starikovskaya, Tatiana
    COMBINATORIAL PATTERN MATCHING, 2013, 7922 : 28 - 37
  • [42] Minimal schmieren, maximal profitieren
    Anon
    2003, Carl Hanser Verlag (136):
  • [43] On some maximal and minimal sets
    Fang, Jin-Hui
    Cao, Xue-Qin
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (02) : 354 - 358
  • [44] MAXIMAL MINIMAL CONNECTIVITY IN GRAPHS
    PETERS, K
    LASKAR, R
    HEDETNIEMI, S
    ARS COMBINATORIA, 1986, 21 : 59 - 70
  • [45] MINIMAL SHEAR AND MAXIMAL SLICES
    YORK, JW
    SMARR, L
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (04): : 544 - 544
  • [46] Maximal and Minimal Triangular Matrices
    Roksana Słowik
    Results in Mathematics, 2018, 73
  • [47] THE MINIMAL PROPERTY OF THE CONDITION NUMBER OF INVERTIBLE LINEAR BOUNDED OPERATORS IN BANACH SPACES
    陈果良
    魏木生
    Numerical Mathematics A Journal of Chinese Universities(English Series), 2002, (01) : 63 - 69
  • [48] MAXIMAL AND MINIMAL NONNEGATIVE SOLUTIONS OF A SEMI-LINEAR EULER-POISSON-DARBOUX EQUATION
    CHAN, CY
    YOUNG, EC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 90 (01) : 209 - 212
  • [49] A SPLITTING PROPERTY OF MAXIMAL ANTICHAINS
    AHLSWEDE, R
    ERDOS, PL
    GRAHAM, N
    COMBINATORICA, 1995, 15 (04) : 475 - 480
  • [50] The property of maximal eigenvectors of trees
    Gong, Shi-Cai
    Fan, Yi-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (01): : 105 - 111