Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning

被引:38
|
作者
Lei, Yang [1 ]
Shu, Hui-Kuo [1 ]
Tian, Sibo [1 ]
Jeong, Jiwoong Jason [1 ]
Liu, Tian [1 ]
Shim, Hyunsuk [1 ,2 ]
Mao, Hui [2 ]
Wang, Tonghe [1 ]
Jani, Ashesh B. [1 ]
Curran, Walter J. [1 ]
Yang, Xiaofeng [1 ]
机构
[1] Emory Univ, Winship Canc Ctr, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Ctr, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
MRI-based treatment planning; pseudo computed tomography; dictionary learning; feature selection;
D O I
10.1117/1.JMI.5.3.034001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) provides a number of advantages over computed tomography (CT) for radiation therapy treatment planning; however, MRI lacks the key electron density information necessary for accurate dose calculation. We propose a dictionary-learning-based method to derive electron density information from MRIs. Specifically, we first partition a given MR image into a set of patches, for which we used a joint dictionary learning method to directly predict a CT patch as a structured output. Then a feature selection method is used to ensure prediction robustness. Finally, we combine all the predicted CT patches to obtain the final prediction for the given MR image. This prediction technique was validated for a clinical application using 14 patients with brain MR and CT images. The peak signal-to-noise ratio (PSNR), mean absolute error (MAE), normalized cross-correlation (NCC) indices and similarity index (SI) for air, soft-tissue and bone region were used to quantify the prediction accuracy. The mean +/- std of PSNR, MAE, and NCC were: 22.4 +/- 1.9 dB, 82.6 +/- 26.1 HU, and 0.91 +/- 0.03 for the 14 patients. The Sls for air, soft-tissue, and bone regions are 0.98 +/- 0.01, 0.88 +/- 0.03, and 0.69 +/- 0.08. These indices demonstrate the CT prediction accuracy of the proposed learning-based method. This CT image prediction technique could be used as a tool for MRI-based radiation treatment planning, or for PET attenuation correction in a PET/MRI scanner. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Sparse Dictionary-Based Magnetic Resonance Superresolution Imaging with Joint Loss Function Learning
    Liu, Huanyu
    Liu, Xiaodong
    Wu, Jinyu
    Li, Lu
    Shao, Mingmei
    Liu, Yanyan
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [12] Magnetic resonance imaging-based bone imaging of the lower limb: Strategies for generating high-resolution synthetic computed tomography
    Florkow, Mateusz C.
    Nguyen, Chien H.
    Sakkers, Ralph J. B.
    Weinans, Harrie
    Jansen, Mylene P.
    Custers, Roel J. H.
    van Stralen, Marijn
    Seevinck, Peter R.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2024, 42 (04) : 843 - 854
  • [13] Three-dimensional printed surgical guides for keratoma removal in horses using computed tomography or magnetic resonance imaging-based segmentation
    Biedrzycki, Adam H.
    Morton, Alison J.
    Perez-Jimenez, Erik E.
    Elane, George L.
    Roe, Heather A.
    Trolinger-Meadows, Kimberly D.
    VETERINARY SURGERY, 2022, 51 : O43 - O52
  • [14] Pseudo-Computed Tomography Generation Using Rigid Registration of Pretaken Diagnostic Computed Tomography to Planning Magnetic Resonance for Magnetic Resonance-Based Treatment Planning
    Jeong, H. J.
    Kang, K. M.
    Jeong, B. K.
    Song, J. H.
    Lee, Y. H.
    Choi, H. S.
    Jung, J. H.
    Woo, S. H.
    Kim, J. H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E663 - E663
  • [15] Fibrosarcoma of the temporomandibular joint area: benefits of magnetic resonance imaging and computed tomography
    Gamoh, Shoko
    Nakashima, Yukako
    Aldyama, Hironori
    Tsuji, Kaname
    Yamada, Koji
    Suzuki, Motoyuld
    Morita, Shosuke
    Shimizutani, Kimishige
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2014, 118 (03): : 262 - 266
  • [16] Ultrasonography, computed tomography and magnetic resonance imaging of the bovine metacarpo/metatarsophalangeal joint
    Hagag, U.
    Tawfiek, M. G.
    VETERINARY JOURNAL, 2018, 233 : 66 - 75
  • [17] Incidental findings involving the temporomandibular joint on computed tomography and magnetic resonance imaging
    Lau, Samuel Chuan Xian
    Lim, Li Zhen
    Hallinan, James Thomas Patrick Decourcy
    Makmur, Andrew
    SINGAPORE MEDICAL JOURNAL, 2023, 64 (04) : 262 - 270
  • [18] Multiparametric Magnetic Resonance Imaging Guided Radiation Therapy for Prostate Cancer Using Learning-Based Magnetic Resonance Imaging-Computed Tomography Registration
    Yang, X.
    Jani, A.
    Rossi, P. J.
    Mao, H.
    Curran, W. J., Jr.
    Liu, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E601 - E601
  • [19] Comparison of Computed Tomography- and Magnetic Resonance Imaging-based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer
    Swanick, Cameron W.
    Castle, Katherine O.
    Vedam, Sastry
    Munsell, Mark F.
    Turner, Lehendrick M.
    Rauch, Gaiane M.
    Jhingran, Anuja
    Eifel, Patricia J.
    Klopp, Ann H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (04): : 793 - 800
  • [20] A Descriptive Study of the Carpal Joint of Healthy Donkeys Using Ultrasonography, Computed Tomography, and Magnetic Resonance Imaging
    Salem, Mohamed
    El-Shafaey, El-Sayed
    Farag, Alshimaa M. M.
    El-khodery, Sabry
    Al Mohamad, Zakriya
    Abass, Marwa
    VETERINARY SCIENCES, 2022, 9 (05)