ZAREMBA'S BOUNDARY VALUE PROBLEM IN THE SMIRNOV CLASS OF HARMONIC FUNCTIONS IN DOMAINS WITH PIECEWISE-SMOOTH BOUNDARIES

被引:0
|
作者
Khuskivadze, G. [1 ]
Paatashvili, V. [1 ]
机构
[1] A Razmadze Math Inst, 1 M Aleksidze St, Tbilisi 0193, Georgia
关键词
Harmonic functions of Smirnov type; Zaremba's problem; mixed problem; weighted functions; Poisson integral; singular integral equation in a weight Lebesgue space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zaremba's problem is studied in weighted Smirnov classes of harmonic functions in domains bounded by arbitrary simple smooth curves as well as in some domains with piecewise-smooth boundaries. The conditions of solvability are obtained and the solutions are written in quadratures.
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [41] Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains
    Aikawa, Hiroaki
    Kilpelainen, Tero
    Shanmugalingam, Nageswari
    Zhong, Xiao
    POTENTIAL ANALYSIS, 2007, 26 (03) : 281 - 301
  • [42] A note on boundary unique continuation for harmonic functions in non-smooth domains
    Kenig, CE
    Wang, WS
    POTENTIAL ANALYSIS, 1998, 8 (02) : 143 - 147
  • [43] Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains
    Hiroaki Aikawa
    Tero Kilpeläinen
    Nageswari Shanmugalingam
    Xiao Zhong
    Potential Analysis, 2007, 26 : 281 - 301
  • [44] A Note on Boundary Unique Contination for Harmonic Functions in Non-Smooth Domains
    Carlos E. Kenig
    Wensheng Wang
    Potential Analysis, 1998, 8 : 143 - 147
  • [45] Riemann boundary value problem for harmonic functions in Clifford analysis
    Gu Longfei
    Zhang Zhongxiang
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1001 - 1012
  • [46] BOUNDARY-VALUE PROBLEM FOR A SYSTEM OF HARMONIC-FUNCTIONS
    KIBIREV, VV
    DIFFERENTIAL EQUATIONS, 1981, 17 (01) : 50 - 55
  • [47] On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
    Tanana, V. P.
    Bredikhina, A. B.
    Kamaltdinova, T. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (01): : 281 - 288
  • [48] One class of generalized boundary value problem for analytic functions
    Pingrun Li
    Boundary Value Problems, 2015
  • [49] One class of generalized boundary value problem for analytic functions
    Li, Pingrun
    BOUNDARY VALUE PROBLEMS, 2015,
  • [50] RIEMANN BOUNDARY VALUE PROBLEM IN A CLASS OF GENERALIZED ANALYTIC FUNCTIONS
    Musayev, Kamal M.
    Gasanova, Tamilla Kh.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2005, 22 (30): : 93 - 98