ON THE CONVERGENCE OF INEXACT QUASI-NEWTON METHODS

被引:1
|
作者
MORET, I
机构
关键词
D O I
10.1080/00207168908803733
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:117 / 137
页数:21
相关论文
共 50 条
  • [21] Inexact quasi-Newton methods under a relaxed metric regularity assumption
    Pietrus, A.
    Santos, P. S. M.
    Silva, G. N.
    NUMERICAL ALGORITHMS, 2024,
  • [22] Globally convergent inexact quasi-Newton methods for solving nonlinear systems
    Birgin, EG
    Krejic, N
    Martínez, JM
    NUMERICAL ALGORITHMS, 2003, 32 (2-4) : 249 - 260
  • [23] Globally Convergent Inexact Quasi-Newton Methods for Solving Nonlinear Systems
    Ernesto G. Birgin
    Nataša Krejić
    José Mario Martínez
    Numerical Algorithms, 2003, 32 : 249 - 260
  • [24] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    Annals of Operations Research, 2001, 103 : 213 - 234
  • [25] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [26] On the global convergence of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems
    Goncalves, M. L. N.
    Oliveira, F. R.
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 609 - 631
  • [27] On the convergence of inexact newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 355 - 363
  • [28] On the global convergence of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems
    M. L. N. Gonçalves
    F. R. Oliveira
    Numerical Algorithms, 2020, 84 : 609 - 631
  • [29] On the convergence of inexact Newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2013, 103 : 355 - 363
  • [30] CHARACTERIZATION OF SUPERLINEAR CONVERGENCE AND ITS APPLICATION TO QUASI-NEWTON METHODS
    DENNIS, JE
    MORE, JJ
    MATHEMATICS OF COMPUTATION, 1974, 28 (126) : 549 - 560