2 RECURRENCE RELATIONS FOR HERMITE BASIS POLYNOMIALS

被引:0
|
作者
CAVENDISH, JC
MEYER, WW
SHARMA, A
MATHER, KK
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:143 / 144
页数:2
相关论文
共 50 条
  • [1] Recurrence relations for exceptional Hermite polynomials
    Gomez-Ullate, D.
    Kasman, A.
    Kuijlaars, A. B. J.
    Milson, R.
    JOURNAL OF APPROXIMATION THEORY, 2016, 204 : 1 - 16
  • [2] Recurrence Relations for Wronskian Hermite Polynomials
    Bonneux, Niels
    Stevens, Marco
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [3] The Expansion of Wronskian Hermite Polynomials in the Hermite Basis
    Grosu, Codrut
    Grosu, Corina
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [4] Nonlinear recurrence relations for modified Q-discrete hermite orthogonal polynomials
    Hounga, C
    Hounkonnou, MN
    Ronveaux, A
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON CONTEMPORARY PROBLEMS IN MATHEMATICAL PHYSICS, 2004, : 568 - 574
  • [6] SOME RELATIONS ON HERMITE-HERMITE MATRIX POLYNOMIALS
    Shehata, Ayman
    Cekim, Bayram
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 181 - 194
  • [7] NEW RELATIONS FOR 2-DIMENSIONAL HERMITE-POLYNOMIALS
    DODONOV, VV
    MANKO, VI
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) : 4277 - 4294
  • [8] Some recurrence formulas for the Hermite polynomials and their squares
    He, Yuan
    Yang, Fengzao
    OPEN MATHEMATICS, 2018, 16 : 553 - 560
  • [9] Plancherel-Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations
    Aptekarev, A. I.
    Dobrokhotov, S. Yu.
    Tulyakov, D. N.
    Tsvetkova, A. V.
    IZVESTIYA MATHEMATICS, 2022, 86 (01) : 32 - 91
  • [10] The Weighted Hermite Polynomials Form a Basis for L2(R)
    Johnston, William
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (03): : 249 - 253