ON THE INFIMUM OF THE HAUSDORFF METRIC TOPOLOGIES

被引:0
|
作者
COSTANTINI, C [1 ]
VITOLO, P [1 ]
机构
[1] UNIV BASILICATA,DIPARTIMENTO MATEMAT,I-85100 POTENZA,ITALY
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a metrizable space X and a compatible metric d, one defines the Hausdorff metric topology H-d and the upper and lower Hausdorff topologies corresponding to d, H-d(+) and H-d(-) respectively, on the collection Ce(X) of all closed subsets of X. In this paper we consider the infima tau, tau(+) and tau(-), of the topologies H-d H-d(+) and H-d(-) respectively, where d runs over the set M(X) of all compatible metrics on X. These topologies are sequential, that is, they are completely characterized by convergent sequences. In particular, the topologies tau(+) and tau(-) are investigated in detail: a suitable topology U+ is defined which has the same convergent sequences as tau(+), and the lower Vietoris topology V- plays a similar role with respect to tau(-). We show that, in general, the equality tau = tau(+) V tau(-) does not hold. We also show that tau is a tau(2)-topology on C(X) if and only if X is locally compact.
引用
收藏
页码:441 / 480
页数:40
相关论文
共 50 条
  • [1] ON THE INFIMUM OF THE HAUSDORFF AND VIETORIS TOPOLOGIES
    LEVI, S
    LUCCHETTI, R
    PELANT, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 971 - 978
  • [2] The Infimum in the Metric Mahler Measure
    Samuels, Charles L.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (04): : 739 - 747
  • [3] ON TOPOLOGIES CONNECTED WITH HAUSDORFF MEASURES
    Horbaczewska, Grazyna
    REAL ANALYSIS EXCHANGE, 2007, 33 (01) : 151 - 158
  • [4] Extending compact topologies to compact Hausdorff topologies in ZF
    Herrlich, Horst
    Keremedis, Kyriakos
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2279 - 2286
  • [5] METRIZABLE TOPOLOGIES ON A HAUSDORFF SPACE
    BERKOWIT.HW
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (08): : 1015 - &
  • [6] ON THE METRIC STRUCTURE OF HYPERSPACES WITH HAUSDORFF METRIC
    BANDT, C
    MATHEMATISCHE NACHRICHTEN, 1986, 129 : 175 - 183
  • [7] WHICH TOPOLOGIES HAVE IMMEDIATE PREDECESSORS IN THE POSET OF HAUSDORFF TOPOLOGIES?
    Alas, Ofelia T.
    Tkachenko, Mikhail G.
    Wilson, Richard G.
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (01): : 149 - 158
  • [8] CONSTRUCTING WEAKER CONNECTED HAUSDORFF TOPOLOGIES
    Alas, Ofelia T.
    Wilson, Richard G.
    TOPOLOGY PROCEEDINGS, VOL 35, 2010, 35 : 225 - +
  • [9] Split Hausdorff internal topologies on posets
    Luo, Shuzhen
    Xu, Xiaoquan
    OPEN MATHEMATICS, 2019, 17 : 1756 - 1763
  • [10] SPACES WITH COARSER MINIMAL HAUSDORFF TOPOLOGIES
    PORTER, J
    VERMEER, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) : 59 - 71