Influence of nonlinear dissipation and external perturbations on transition scenarios to the chaos in the Lorenz-Haken system

被引:0
|
作者
Dvornichenko, A., V [1 ]
机构
[1] Sumy State Univ, 2 Rimskiy Korsakov Str, UA-40000 Sumy, Ukraine
来源
FUNCTIONAL MATERIALS | 2013年 / 20卷 / 02期
关键词
D O I
10.15407/fm20.02.227
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We studied an influence of nonlinear dissipation and external perturbations on transition scenarios to the chaos in the Lorenz-Haken system. It was shown that variation in the values of external potential parameters leads to parameters domain formation which results in the chaos appearance. We have found that in the modified Lorenz-Haken system transitions from the regular to chaotic dynamics can be of Ruelle-Takens scenario, Feigenbaum scenario, or through intermittency.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [1] Nonlinear dynamics in the generalized Lorenz-Haken model
    Univ of Rochester, Rochester, United States
    Opt Commun, 1-6 (565-577):
  • [2] Dynamics of the stochastic Lorenz-Haken system
    Li, Lijie
    Feng, Yu
    Liu, Yongjian
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 670 - 678
  • [3] Nonlinear dynamics in the generalized Lorenz-Haken model
    vanTartwijk, GHM
    Agrawal, GP
    OPTICS COMMUNICATIONS, 1997, 133 (1-6) : 565 - 577
  • [4] Virtual Photon Effects on Chaos in Generalized Lorenz-Haken Equation
    JU Rui
    HUANG Hong-Bin
    YANG Peng
    XIE Xia
    ZHAO Huan Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (07) : 65 - 71
  • [5] Virtual photon effects on chaos in generalized Lorenz-Haken equation
    Ju, R
    Huang, HB
    Yang, P
    Xie, X
    Zhao, H
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (01) : 65 - 71
  • [6] Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
    Li, Damei
    Wu, Xiaoqun
    Lu, Jun-an
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1290 - 1296
  • [7] The study of finite-time stability active control method for Lorenz-Haken laser chaotic system
    Zhao Jian-Li
    Wang Jing
    Wang Hui
    ACTA PHYSICA SINICA, 2012, 61 (11)
  • [8] Controlling chaos with periodic parametric perturbations in Lorenz system
    Wu, Zhengmao
    Xie, Jianying
    Fang, Yanyan
    Xu, Zhenyuan
    CHAOS SOLITONS & FRACTALS, 2007, 32 (01) : 104 - 112
  • [9] THE TRANSITION TO CHAOS IN AN ASYMMETRIC PERTURBATION OF THE LORENZ SYSTEM
    COX, SM
    PHYSICS LETTERS A, 1990, 144 (6-7) : 325 - 328
  • [10] ANALYTICAL PREDICTION OF THE TRANSITION TO CHAOS IN LORENZ SYSTEM
    Vadasz, Peter
    PROCEEDINGS OF THE 9TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2008, VOL 2, 2009, : 799 - 803