Comparing marker definition algorithms for Watershed segmentation in microscopy images

被引:0
|
作者
Gonzalez, Mariela A. [1 ,2 ]
Cuadrado, Teresita R. [1 ,2 ]
Ballarin, Virginia L. [1 ]
机构
[1] Univ Nacl Mar del Plata, Dept Elect, Signal Proc Lab, Mar Del Plata, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
关键词
Segmentation; Digital image processing; Fuzzy logic; clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [1] Automatic marker generation for watershed segmentation of natural images
    Sigut, J.
    Fumero, F.
    Nunez, O.
    Sigut, M.
    ELECTRONICS LETTERS, 2014, 50 (18) : 1281 - 1282
  • [2] An Improved Watershed Segmentation Method for Electron Microscopy Images
    Liu, Qi
    Li, Kaiyue
    Ding, Guangtai
    Hu, Dongli
    Zhang, Huiran
    2018 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSSE 2018), 2018, : 98 - 105
  • [3] Segmentation of Liver Metastasis on CT Images Using the Marker-controlled Watershed and Fuzzy Connectedness Algorithms
    Yan, Jiayong
    Fang, John Q.
    2015 INTERNATIONAL SYMPOSIUM ON BIOELECTRONICS AND BIOINFORMATICS (ISBB), 2015, : 47 - 50
  • [4] Marker-based watershed algorithm for segmentation of the infrared images
    Manda, Manikanta Prahlad
    Park, ChanSu
    Oh, Byeong Cheol
    Kim, Hi-Seok
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 227 - 228
  • [5] Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells
    Dima, Alden A.
    Elliott, John T.
    Filliben, James J.
    Halter, Michael
    Peskin, Adele
    Bernal, Javier
    Kociolek, Marcin
    Brady, Mary C.
    Tang, Hai C.
    Plant, Anne L.
    CYTOMETRY PART A, 2011, 79A (07) : 545 - 559
  • [6] Marker-controlled watershed for lymphoma segmentation in sequential CT images
    Yan, Jiayong
    Zhao, Binsheng
    Wang, Liang
    Zelenetz, Andrew
    Schwartz, Lawrence H.
    MEDICAL PHYSICS, 2006, 33 (07) : 2452 - 2460
  • [7] Segmentation of medical images based on GFO and marker-controlled watershed
    Cheng, Guang-Bin
    Hao, Li-Wei
    Zhou, Shou-Jun
    Chen, Wu-Fan
    Guangxue Jishu/Optical Technique, 2008, 34 (03): : 338 - 340
  • [8] A novel multiphoton microscopy images segmentation method based on superpixel and watershed
    Wu, Weilin
    Lin, Jinyong
    Wang, Shu
    Li, Yan
    Liu, Mingyu
    Liu, Gaoqiang
    Cai, Jianyong
    Chen, Guannan
    Chen, Rong
    JOURNAL OF BIOPHOTONICS, 2017, 10 (04) : 532 - 541
  • [9] Comparison of Segmentation Algorithms for the Zebrafish Heart in Fluorescent Microscopy Images
    Kraemer, P.
    Boto, F.
    Wald, D.
    Bessy, F.
    Paloc, C.
    Callol, C.
    Letamendia, A.
    Ibarbia, I.
    Holgado, O.
    Virto, J. M.
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 1041 - +
  • [10] Segmentation of Liver using Marker Watershed Transform Algorithm for CT Scan Images
    Lawankar, Maithili
    Sangewar, Shraddha
    Gugulothu, Somulu
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 553 - 556