Infinitesimally Flexible Skeleta of Cross-Polytopes and Second-Hypersimplices

被引:0
|
作者
Borcea, Ciprian S. [1 ]
机构
[1] Rider Univ, Dept Math, Lawrenceville, NJ 08648 USA
来源
JOURNAL FOR GEOMETRY AND GRAPHICS | 2008年 / 12卷 / 01期
关键词
linkage; rigidity; infinitesimal flexibility; cross-polytope; second-hypersimplex;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the infinitesimal flexibility of frameworks is R-d with graphs corresponding to the 1-skeleton of a cross-polytope, respectively second-hypersimplex, of dimension d. Both represent generalizations of the classical case of the octahedron: the former in the regular sense, resulting in 'overbraced' linkages for d >= 4, and the latter in the sense of minimally rigid graphs.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 19 条
  • [1] Flexible Cross-Polytopes in Spaces of Constant Curvature
    Gaifullin, Alexander A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 286 (01) : 77 - 113
  • [2] Flexible cross-polytopes in spaces of constant curvature
    Alexander A. Gaifullin
    Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 77 - 113
  • [3] Embedded flexible spherical cross-polytopes with nonconstant volumes
    Gaifullin, Alexander A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 56 - 80
  • [4] Embedded flexible spherical cross-polytopes with nonconstant volumes
    Alexander A. Gaifullin
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 56 - 80
  • [5] Monotone Paths on Cross-Polytopes
    Black, Alexander E.
    De Loera, Jesus A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1245 - 1265
  • [6] Monotone Paths on Cross-Polytopes
    Alexander E. Black
    Jesús A. De Loera
    Discrete & Computational Geometry, 2023, 70 : 1245 - 1265
  • [7] Extremal cross-polytopes and Gaussian vectors
    Ambrus, Gergely
    ADVANCES IN GEOMETRY, 2015, 15 (01) : 93 - 100
  • [8] Minimum bounding boxes for regular cross-polytopes
    Shahid, Salman
    Pramanik, Sakti
    Owen, Charles B.
    Proceedings of the ACM Symposium on Applied Computing, 2012, : 879 - 884
  • [9] Lattice Points in Algebraic Cross-polytopes and Simplices
    Borda, Bence
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (01) : 145 - 169
  • [10] Covering cross-polytopes with smaller homothetic copies
    Chen, Feifei
    Gao, Shenghua
    Wu, Senlin
    AIMS MATHEMATICS, 2024, 9 (02): : 4014 - 4020