THE CONTROVERSY ON INTUITIONISTIC LOGIC BEFORE ITS AXIOMALIZATION BY HEYTING IN 1930

被引:0
|
作者
THIEL, C
机构
关键词
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
引用
收藏
页码:68 / 69
页数:2
相关论文
共 18 条
  • [1] Embeddings into free Heyting algebras and translations into intuitionistic propositional logic
    O'Connor, Michael
    Logical Foundations of Computer Science, Proceedings, 2007, 4514 : 437 - 448
  • [2] Contrapositionally complemented Heyting algebras and intuitionistic logic with minimal negation
    More, Anuj Kumar
    Banerjee, Mohua
    LOGIC JOURNAL OF THE IGPL, 2023, 31 (03) : 441 - 474
  • [3] Knowledge and its dynamics in intuitionistic logic
    Pavlova, Alexandra M.
    FILOSOFSKII ZHURNAL, 2022, 15 (03): : 113 - 124
  • [4] A LOGIC FOR DUALLY HEMIMORPHICSEMI-HEYTING ALGEBRAS AND ITS AXIOMATICEXTENSIONS
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    BULLETIN OF THE SECTION OF LOGIC, 2022, 51 (04): : 555 - 645
  • [5] Basis Logic for Application in Physics and Its Intuitionistic Alternative
    Weingartner, Paul
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1578 - 1596
  • [6] Basis Logic for Application in Physics and Its Intuitionistic Alternative
    Paul Weingartner
    Foundations of Physics, 2010, 40 : 1578 - 1596
  • [7] Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant
    Kamide, Norihiro
    Shramko, Yaroslav
    Wansing, Heinrich
    STUDIA LOGICA, 2017, 105 (06) : 1193 - 1219
  • [8] The Godel-McKinsey-Tarski embedding for infinitary intuitionistic logic and its extensions
    Tesi, Matteo
    Negri, Sara
    ANNALS OF PURE AND APPLIED LOGIC, 2023, 174 (08)
  • [9] A term assignment for polarized bi-intuitionistic logic and its strong normalization
    Biasi, Corrado
    Aschieri, Federico
    FUNDAMENTA INFORMATICAE, 2008, 84 (02) : 185 - 205
  • [10] Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant
    Norihiro Kamide
    Yaroslav Shramko
    Heinrich Wansing
    Studia Logica, 2017, 105 : 1193 - 1219