A FIXED-POINT THEOREM FOR CENTRAL ELEMENTS IN QUASISIMPLE GROUPS

被引:14
|
作者
BLAU, HI
机构
关键词
QUASISIMPLE GROUP; SIMPLE GROUP; SCHUR MULTIPLIER; CONJUGACY CLASS;
D O I
10.2307/2160844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that with a few exceptions (which are listed), any central element in a quasisimple finite group fixes some conjugacy class of the group under multiplication.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [1] A fixed-point theorem for definably amenable groups
    Carmona, Juan Felipe
    Davila, Kevin
    Onshuus, Alf
    Zamora, Rafael
    ARCHIVE FOR MATHEMATICAL LOGIC, 2021, 60 (3-4) : 413 - 424
  • [2] A fixed-point theorem for definably amenable groups
    Juan Felipe Carmona
    Kevin Dávila
    Alf Onshuus
    Rafael Zamora
    Archive for Mathematical Logic, 2021, 60 : 413 - 424
  • [3] FIXED-POINT THEOREM FOR EXPONENTIALLY BOUNDED GROUPS
    JENKINS, JW
    JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) : 346 - 353
  • [4] LEFSCHETZ FIXED-POINT THEOREM FOR COMPACT GROUPS
    KNILL, RJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 66 (01) : 148 - 152
  • [5] A FIXED-POINT THEOREM
    WALLACE, AD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (06) : 413 - 416
  • [6] FIXED-POINT THEOREM
    KALININ, VA
    DOKLADY AKADEMII NAUK SSSR, 1976, 230 (02): : 267 - 268
  • [7] ON A FIXED-POINT THEOREM
    JOO, I
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1989, 36 (1-4): : 127 - 128
  • [8] On a fixed-point theorem
    Binh, TQ
    Chuong, NM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (03) : 220 - 221
  • [9] A FIXED-POINT THEOREM
    SINGH, SL
    SINGH, SP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (12): : 1584 - 1586
  • [10] FIXED-POINT THEOREM
    REICH, S
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (1-2): : 26 - &