CRACK INITIATION UNDER CREEP AND CREEP-FATIGUE ON CT SPECIMENS OF AN AUSTENITIC STAINLESS-STEEL

被引:3
|
作者
LAIARINANDRASANA, L
PIQUES, R
DRUBAY, B
FAIDY, C
机构
[1] CENS,CEA,SEMT,DMT,DRN,F-91191 GIF SUR YVETTE,FRANCE
[2] ELECT FRANCE,EDF,SEPTEN,F-69628 VILLEURBANNE,FRANCE
关键词
D O I
10.1016/0029-5493(95)00986-M
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In the nuclear industry, some methods for calculating the time of crack initiation from pre-existing defects are needed. For this purpose, a correlation is checked between T-i (initiation time) or N-i (initiation cycles) and local parameters at a characteristic finite distance d from the crack-tip (sigma(d) criterion) (D. Moulin, B. Drubay and D. Acker, PVP-Vol. 223 (1992), Pressure Vessel Fracture, Fatigue and Life Management, ASME, 1992.) For fatigue tests, relevance of sigma(d) criterion is observed when using finite element code for calculating axial stress range Delta sigma(d). For creep tests, experimental points corroborate sigma(d) criterion when no stress relaxation at the crack tip is supposed. Finite element code with plane strain or plane stress conditions gives a large value of axial stress at 50 mu m from the crack tip. Crack initiation prediction is then conservative. Further, a remarkable T-i-C-h* tests. Both criterions are compared. For creep-fatigue tests, crack initiation prediction is conservative, but comparison of sigma(d) criterion with other approaches is still in progress. Fracture surface examinations show that both creep and creep-fatigue specimens revealed the same intergranular surface aspect, whereas pure fatigue specimens presented transgranular cracking.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] CRACK INITIATION AND GROWTH UNDER CREEP AND FATIGUE LOADING OF AN AUSTENITIC STAINLESS-STEEL
    PIQUES, R
    BENSUSSAN, P
    PINEAU, A
    NUCLEAR ENGINEERING AND DESIGN, 1989, 116 (03) : 293 - 306
  • [2] ENVIRONMENTAL-EFFECTS ON CREEP-FATIGUE CRACK GROWTH IN AUSTENITIC STAINLESS-STEEL
    SADANANDA, K
    SHAHINIAN, P
    JOURNAL OF METALS, 1979, 31 (12): : 43 - 43
  • [3] RELATIONSHIP OF CREEP, CREEP-FATIGUE, AND CAVITATION DAMAGE IN TYPE-304 AUSTENITIC STAINLESS-STEEL
    MAJUMDAR, S
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1989, 111 (02): : 123 - 131
  • [4] METHODS FOR DETERMINING CREEP DAMAGE AND CREEP-FATIGUE CRACK GROWTH INCUBATION IN AUSTENITIC STAINLESS STEEL
    Webster, George A.
    Dean, David W.
    Spindler, Michael W.
    Smith, N. Godfrey
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 671 - 683
  • [5] Local approach: Numerical simulations of creep and creep-fatigue crack initiation and crack growth in 316L SPH austenitic stainless steel
    Poquillon, D
    Cabrillat, MT
    Pineau, A
    JOURNAL DE PHYSIQUE IV, 1996, 6 (C6): : 421 - 430
  • [6] Crack initiation on 316L(N) CT specimens under creep-fatigue conditions
    Laiarinandrasana, L
    Piques, R
    Drubay, B
    ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE, VOLS I-III, 1996, : 1317 - 1322
  • [7] Crack initiation on 316L(N) CT specimens under creep-fatigue conditions
    Laiarinandrasana, L
    Piques, R
    Drubay, B
    Faidy, C
    LIFE ASSESSMENT AND LIFE EXTENSION OF ENGINEERING PLANT, STRUCTURES AND COMPONENTS, 1996, : 95 - 102
  • [8] Crack growth in stainless steel 304 under creep-fatigue loading
    Baik, Y. M.
    Kim, K. S.
    PROGRESSES IN FRACTURE AND STRENGTH OF MATERIALS AND STRUCTURES, 1-4, 2007, 353-358 : 485 - +
  • [9] LIFE PREDICTION OF 316 STAINLESS-STEEL UNDER CREEP-FATIGUE LOADING
    YAGI, K
    KANEMARU, O
    KUBO, K
    TANAKA, C
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1986, 9 (06) : 395 - 408
  • [10] Probabilistic assessment of creep-fatigue crack propagation in austenitic stainless steel cracked plates
    Vojdani, A.
    Farrahi, G. H.
    Mehmanparast, A.
    Wang, B.
    ENGINEERING FRACTURE MECHANICS, 2018, 200 : 50 - 63