ABELIAN AVALANCHES AND TUTTE POLYNOMIALS

被引:42
|
作者
GABRIELOV, A [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
来源
PHYSICA A | 1993年 / 195卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4371(93)90267-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of deterministic lattice models of failure, Abelian avalanche (AA) models, with continuous phase variables, similar to discrete Abelian sandpile (ASP) models. We investigate analytically the structure of the phase space and statistical properties of avalanches in these models. We show that the distributions of avalanches in AA and ASP models with the same redistribution matrix and loading rate are identical. For an AA model on a graph, statistics of avalanches is linked to Tutte polynomials associated with this graph and its subgraphs. In the general case, statistics of avalanches is linked to an analog of a Tutte polynomial defined for any symmetric matrix.
引用
收藏
页码:253 / 274
页数:22
相关论文
共 50 条
  • [1] G-Tutte Polynomials and Abelian Lie Group Arrangements
    Liu, Ye
    Tan Nhat Tran
    Yoshinaga, Masahiko
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (01) : 152 - 190
  • [2] TUTTE POLYNOMIALS AND LINK POLYNOMIALS
    JAEGER, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) : 647 - 654
  • [3] Chain polynomials and Tutte polynomials
    Traldi, L
    DISCRETE MATHEMATICS, 2002, 248 (1-3) : 279 - 282
  • [4] Tutte polynomials of bracelets
    Norman Biggs
    Journal of Algebraic Combinatorics, 2010, 32 : 389 - 398
  • [5] Computing Tutte Polynomials
    Haggard, Gary
    Pearce, David J.
    Royle, Gordon
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2010, 37 (03):
  • [6] TUTTE POLYNOMIALS FOR TREES
    CHAUDHARY, S
    GORDON, G
    JOURNAL OF GRAPH THEORY, 1991, 15 (03) : 317 - 331
  • [7] An inequality for Tutte polynomials
    Bill Jackson
    Combinatorica, 2010, 30 : 69 - 81
  • [8] Tutte polynomials of bracelets
    Biggs, Norman
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 389 - 398
  • [9] AN INEQUALITY FOR TUTTE POLYNOMIALS
    Jackson, Bill
    COMBINATORICA, 2010, 30 (01) : 69 - 81
  • [10] A generalization of the Tutte polynomials
    Miezaki, Tsuyoshi
    Oura, Manabu
    Sakuma, Tadashi
    Shinohara, Hidehiro
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2019, 95 (10) : 111 - 113