The Wentzel-Brillouin-Kramers method of solving the wave equation

被引:597
作者
Dunham, JL [1 ]
机构
[1] Harvard Univ, Cambridge, MA USA
来源
PHYSICAL REVIEW | 1932年 / 41卷 / 06期
关键词
D O I
10.1103/PhysRev.41.713
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:713 / 720
页数:8
相关论文
共 14 条
[1]  
BOREL E, 1928, LECONS SERIES DIVERG, P21
[2]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[3]  
FORD WB, 1916, STUDIES DIVERGENT SE, P22
[4]  
HORN J, 1899, MATH ANN, V52, P271
[5]  
HORN J, 1927, GEWOHN DIFF GLEICH, P188
[6]   Wave mechanics and half-integral quantisation [J].
Kramers, HA .
ZEITSCHRIFT FUR PHYSIK, 1926, 39 (10/11) :828-840
[7]  
SCHLESINGER L, 1922, GEWOHNLICHE DIFFERET, P248
[8]  
STOKES GG, MATH PHYS PAPERS, V4, P77
[9]  
STOKES GG, MATH PHYS PAPERS, V4, P283
[10]   A generalisation of the quantum constraints for the purposes of the wave mechanics [J].
Wentzel, G .
ZEITSCHRIFT FUR PHYSIK, 1926, 38 (6/7) :518-529