THE NUMBER OF SMALL CYCLES IN THE STAR GRAPH

被引:0
|
作者
Medvedev, Alexey N. [1 ,2 ,3 ]
机构
[1] Sobolev Inst Math, 4 Koptyug Av, Novosibirsk 630090, Russia
[2] Cent European Univ, Nador Ut 9, H-1051 Budapest, Hungary
[3] MTA Renyi Alfred Inst Math, Realtanoda Ut 13-15, H-1053 Budapest, Hungary
关键词
Cayley graphs; Star graph; cycle embedding; number of cycles;
D O I
10.17377/semi.2016.13.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Star graph is the Cayley graph on the symmetric group Sym(n) generated by the set of transpositions { (1 i) is an element of Sym(n) : 2 <= i 6 <= g. This graph is bipartite and does not contain odd cycles but contains all even cycles with a sole exception of 4-cycles. We denote as (pi, i d) - cycles the cycles constructed from two shortest paths between a given vertex pi and the identity i d. In this paper we derive the exact number of (pi; i d) cycles for particular structures of the vertex pi. We use these results to obtain the total number of 10-cycles passing through any given vertex in the Star graph.
引用
收藏
页码:286 / 299
页数:14
相关论文
共 50 条
  • [1] SMALL CYCLES IN THE STAR GRAPH
    Konstantinova, Elena V.
    Medvedev, Alexey N.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 906 - 914
  • [2] Number of cycles of small length in a graph
    Barik, Sasmita
    Reddy, Sane Umesh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (02) : 134 - 147
  • [3] ON THE NUMBER OF CYCLES IN A GRAPH
    AlBdaiwi, Bader F.
    MATHEMATICA SLOVACA, 2018, 68 (01) : 1 - 10
  • [4] The Minimum Number of 4-Cycles in a Maximal Planar Graph with Small Number of Vertices
    Ervin Győri
    Addisu Paulos
    Oscar Zamora
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [5] The Minimum Number of 4-Cycles in a Maximal Planar Graph with Small Number of Vertices
    Gyori, Ervin
    Paulos, Addisu
    Zamora, Oscar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [6] THE NUMBER OF CYCLES IN A HAMILTON GRAPH
    SHI, YB
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 249 - 257
  • [7] THE STAR CHROMATIC NUMBER OF A GRAPH
    ABBOTT, HL
    ZHOU, B
    JOURNAL OF GRAPH THEORY, 1993, 17 (03) : 349 - 360
  • [8] Disjoint Hamilton cycles in the star graph
    Cada, Roman
    Kaiser, Tomas
    Rosenfeld, Moshe
    Ryjacek, Zdenek
    INFORMATION PROCESSING LETTERS, 2009, 110 (01) : 30 - 35
  • [9] DECOMPOSING A STAR GRAPH INTO DISJOINT CYCLES
    QIU, K
    MEIJER, H
    AKL, S
    INFORMATION PROCESSING LETTERS, 1991, 39 (03) : 125 - 129
  • [10] Maximising the number of induced cycles in a graph
    Morrison, Natasha
    Scott, Alex
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 126 : 24 - 61