BOUNDED WEAK SOLUTIONS OF AN ELLIPTIC-PARABOLIC NEUMANN PROBLEM

被引:13
|
作者
HULSHOF, J
机构
关键词
D O I
10.2307/2000789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [1] SPHERICALLY SYMMETRICAL SOLUTIONS OF AN ELLIPTIC-PARABOLIC NEUMANN PROBLEM
    HULSHOF, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (02) : 671 - 681
  • [2] Uniqueness for an elliptic-parabolic problem with Neumann boundary condition
    Boris P. Andreianov
    Fouzia Bouhsiss
    Journal of Evolution Equations, 2004, 4 : 273 - 295
  • [3] Uniqueness for an elliptic-parabolic problem with Neumann boundary condition
    Andreianov, BP
    Bouhsiss, F
    JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (02) : 273 - 295
  • [4] An elliptic-parabolic problem
    Benilan, P
    Wittbold, P
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (01): : 121 - 127
  • [5] On a nonlinear elliptic-parabolic problem
    Ouaro, S
    Touré, H
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (01) : 27 - 30
  • [6] Existence of Weak Solutions to an Elliptic-Parabolic Equation with Variable Order of Nonlinearity
    Mukminov F.K.
    Andriyanova E.R.
    Journal of Mathematical Sciences, 2019, 241 (3) : 290 - 305
  • [7] Classical solutions to a moving boundary problem for an elliptic-parabolic system
    Escher, J
    INTERFACES AND FREE BOUNDARIES, 2004, 6 (02): : 175 - 193
  • [8] Weak solutions for multiquasilinear elliptic-parabolic systems: application to thermoelectrochemical problems
    Consiglieri, Luisa
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 535 - 562
  • [9] Viscosity solutions for elliptic-parabolic problems
    Paola Mannucci
    Juan Luis Vazquez
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 75 - 90
  • [10] Viscosity solutions for elliptic-parabolic problems
    Mannucci, Paola
    Vazquez, Juan Luis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (1-2): : 75 - 90