THE POISSON BOUNDARY FOR RANK-ONE MANIFOLDS AND THEIR COCOMPACT LATTICES

被引:19
|
作者
BALLMANN, W [1 ]
LEDRAPPIER, F [1 ]
机构
[1] UNIV PARIS 06, F-75252 PARIS 05, FRANCE
关键词
D O I
10.1515/form.1994.6.301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a complete simply connected Riemannian manifold of non-positive curvature. If M admits a compact quotient and is of rank one, then Brownian motion converges at partial derivative M, the sphere at infinity, and defines the family of harmonic measures on partial derivative M. In this paper it is shown that partial derivative M together with this family of measures is naturally isomorphic to the Poisson boundary of M.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [1] ON MOISHEZON MANIFOLDS WITH PICARD GROUP OF RANK-ONE
    BONAVERO, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (04): : 443 - 446
  • [2] Rigidity for convex-cocompact actions on rank-one symmetric spaces
    David, Guy C.
    Kinneberg, Kyle
    GEOMETRY & TOPOLOGY, 2018, 22 (05) : 2757 - 2790
  • [3] The topology of compact rank-one ECS manifolds
    Derdzinski, Andrzej
    Terek, Ivo
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (03) : 789 - 809
  • [4] Rank-one ECS manifolds of dilational type
    Derdzinski, Andrzej
    Terek, Ivo
    PORTUGALIAE MATHEMATICA, 2024, 81 (1-2) : 69 - 96
  • [5] Rigidity at infinity for lattices in rank-one Lie groups
    Savini, Alessio
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2020, 12 (01) : 113 - 130
  • [6] The metric structure of compact rank-one ECS manifolds
    Derdzinski A.
    Terek I.
    Annals of Global Analysis and Geometry, 2023, 64 (4)
  • [7] THE BOUNDARY OF RANK-ONE DIVISIBLE CONVEX SETS
    Blayac, Pierre-Louis
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (01): : 1 - 17
  • [8] Hyperbolic actions of higher rank lattices come from rank-one factors
    Bader, Uri
    Caprace, Pierre-Emmanuel
    Furman, Alex
    Sisto, Alessandro
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (04) : 961 - 988
  • [9] Probabilistic μ for rank-one and perturbed rank-one matrices
    Manfay, Mate
    Balas, Gary J.
    Bokor, Jozsef
    Gerencser, Loszlo
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2357 - 2361
  • [10] Property (RD) for Cocompact Lattices in a Finite Product of Rank One Lie Groups with Some Rank Two Lie Groups
    Indira Chatterji
    Geometriae Dedicata, 2003, 96 : 161 - 177