THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES

被引:14
|
作者
BROUWER, AE
机构
[1] Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600, MB, Eindhoven
关键词
BINARY LINEAR CODE; UPPER BOUND;
D O I
10.1109/18.212302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Combining Delsarte's linear programming bound with the information that certain weights cannot occur, new upper bounds for d(min) (n, k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 50 条
  • [1] Polytope Representations for Linear-Programming Decoding of Non-Binary Linear Codes
    Skachek, Vitaly
    Flanagan, Mark F.
    Byrne, Eimear
    Greferath, Marcus
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1508 - +
  • [2] Linear-Programming Decoding of Nonbinary Linear Codes
    Flanagan, Mark F.
    Skachek, Vitaly
    Byrne, Eimear
    Greferath, Marcus
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (09) : 4134 - 4154
  • [3] LINEAR-PROGRAMMING BOUNDS FOR TREE CODES
    AALTONEN, MJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (01) : 85 - 90
  • [4] On the linear programming bound for linear Lee codes
    Astola, Helena
    Tabus, Ioan
    SPRINGERPLUS, 2016, 5 : 1 - 13
  • [5] Sharpening the linear programming bound for linear Lee codes
    Astola, H.
    Tabus, I.
    ELECTRONICS LETTERS, 2015, 51 (06) : 492 - 493
  • [6] GENERATION OF TEST PROBLEMS FOR LINEAR-PROGRAMMING CODES
    CHARNES, A
    RAIKE, WM
    STUTZ, JD
    WALTERS, AS
    COMMUNICATIONS OF THE ACM, 1974, 17 (10) : 583 - 586
  • [7] Using linear programming to decode binary linear codes
    Feldman, J
    Wainwright, MJ
    Karger, DR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 954 - 972
  • [8] A COMBINATORIAL BOUND FOR LINEAR-PROGRAMMING AND RELATED PROBLEMS
    SHARIR, M
    WELZL, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 577 : 569 - 579
  • [9] HEURISTIC ANALYSIS, LINEAR-PROGRAMMING AND BRANCH AND BOUND
    WOLSEY, LA
    MATHEMATICAL PROGRAMMING STUDY, 1980, 13 (AUG): : 121 - 134