EVOLUTION MATRIX IN A COHERENCE VECTOR FORMULATION FOR QUANTUM MARKOVIAN MASTER-EQUATIONS OF N-LEVEL SYSTEMS

被引:38
|
作者
LENDI, K
机构
来源
关键词
D O I
10.1088/0305-4470/20/1/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [1] Coherence preservation of Markovian open quantum systems in N-level Ξ configuration
    Yang, Fei
    Cong, Shuang
    Shuang, Feng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2098 - 2102
  • [2] ENTROPY PRODUCTION IN COHERENCE-VECTOR FORMULATION FOR N-LEVEL SYSTEMS
    LENDI, K
    PHYSICAL REVIEW A, 1986, 34 (01): : 662 - 663
  • [3] ASYMPTOTIC PROPERTIES OF THE MARKOVIAN MASTER-EQUATIONS FOR MULTI-STATIONARY SYSTEMS
    DING, EJ
    PHYSICA A, 1983, 119 (1-2): : 317 - 326
  • [4] The Bloch Vector for N-Level Systems
    Kimura, Gen
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 : 185 - 188
  • [5] The Bloch vector for N-level systems
    Kimura, G
    PHYSICS LETTERS A, 2003, 314 (5-6) : 339 - 349
  • [6] Resonance in n-level quantum systems
    Boscain, U
    Chadot, G
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 726 - 731
  • [7] N-LEVEL COHERENCE VECTOR AND HIGHER CONSERVATION-LAWS IN QUANTUM OPTICS AND QUANTUM-MECHANICS
    HIOE, FT
    EBERLY, JH
    PHYSICAL REVIEW LETTERS, 1981, 47 (12) : 838 - 841
  • [8] THE STOCHASTIC-MODELS FOR NON-EQUILIBRIUM SYSTEMS AND FORMULATION OF MASTER-EQUATIONS
    YAN, ST
    LI, ZB
    CHINESE PHYSICS, 1981, 1 (02): : 324 - 337
  • [9] Markovian master equations and resonances in quantum open systems
    Kossakowski, A
    IRREVERSIBLE QUANTUM DYNAMICS, 2003, 622 : 303 - 314
  • [10] Coherent quantum observers for n-level quantum systems
    Miao, Z.
    Espinosa, Luis A. Duffaut
    Petersen, I. R.
    Ugrinovskii, V.
    James, M. R.
    2013 3RD AUSTRALIAN CONTROL CONFERENCE (AUCC), 2013, : 313 - 318