DOUBLE BUBBLES ON THE LINE WITH LOG-CONVEX DENSITY f WITH (log f)' BOUNDED

被引:0
|
作者
Sothanaphan, Nat [1 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10003 USA
关键词
double bubble; density; isoperimetric;
D O I
10.35834/mjms/1544151693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results of Bongiovanni et al. [1] on double bubbles on the line with log-convex density to the case where the derivative of the log of the density is bounded. We show that the tie function between the double interval and the triple interval still exists, but may blow up to infinity in finite time. For the first time, a density is presented for which the blowup time is positive and finite.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 50 条
  • [1] Double Bubbles on the Real Line with Log-Convex Density
    Bongiovanni, Eliot
    Di Giosia, Leonardo
    Diaz, Alejandro
    Habib, Jahangir
    Kakkar, Arjun
    Kenigsberg, Lea
    Pittman, Dylanger
    Sothanaphan, Nat
    Zhu, Weitao
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2018, 6 (01): : 64 - 88
  • [2] The Log-Convex Density Conjecture
    Morgan, Frank
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 209 - 211
  • [3] Proof of the Log-Convex Density Conjecture
    Chambers, Gregory R.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (08) : 2301 - 2332
  • [4] f-Divergence functional of operator log-convex functions
    Kian, Mohsen
    Dragomir, S. S.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (02): : 123 - 135
  • [5] An isoperimetric inequality in the plane with a log-convex density
    McGillivray, I.
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 817 - 874
  • [6] An isoperimetric inequality in the plane with a log-convex density
    I. McGillivray
    Ricerche di Matematica, 2018, 67 : 817 - 874
  • [7] Quantitative isoperimetric inequalities for log-convex probability measures on the line
    Feo, F.
    Posteraro, M. R.
    Roberto, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 879 - 907
  • [8] Eigenvalue inequalities for convex and log-convex functions
    Aujla, Jaspal Singh
    Bourin, Jean-Christophe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 25 - 35
  • [9] On the roots of polynomials with log-convex coefficients
    Hernandez Cifre, Maria A.
    Tarraga, Miriam
    Yepes Nicolas, Jesus
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 470 - 493
  • [10] LOG AND HARMONICALLY LOG-CONVEX FUNCTIONS RELATED TO MATRIX NORMS
    Sababheh, Mohammad
    OPERATORS AND MATRICES, 2016, 10 (02): : 453 - 465