Influence of Eta-Phase on Wear Behavior of WC-Co Carbides

被引:19
|
作者
Formisano, A. [1 ]
Minutolo, F. Capece [1 ]
Caraviello, A. [1 ]
Carrino, L. [1 ]
Durante, M. [1 ]
Langella, A. [1 ]
机构
[1] Univ Naples Federico II, Dept Chem Mat & Prod Engn, I-80125 Naples, Italy
关键词
D O I
10.1155/2016/5063274
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Cemented carbides, also known as Widia, are hardmetals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide are prepared and sintered, with different weight percentages of carbon, in order to form Eta-phase and then analyze how the carbon content influences the wear resistance of the material. This characterization is carried out by abrasive wear tests. The test parameters are chosen considering the working conditions of sandblast nozzles. Additional information is gathered through microscopic observations and the evaluation of hardness and microhardness of the different mixtures. The analyses highlight that there is a limit of carbon content below which bad sintering occurs. Considering the mixtures without these sintering problems, they show a wear resistance depending on the size and distribution of the Eta-phase; moreover, the one with high carbon content deficiency shows the best performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ruthenium as an eta-phase inhibitor in WC-Co
    Shing, TL
    Eric, RH
    Luyckx, S
    EURO PM 2002: HARD MATERIALS PROCEEDINGS, 2002, : 92 - 99
  • [3] Influence of μ-size WC on the Corrosion Behavior of Ultrafine WC/WC-Co Cemented Carbides
    Chao Liu
    Yang Liu
    Yunzhu Ma
    Wensheng Liu
    Yuehui He
    Journal of Superhard Materials, 2019, 41 : 334 - 344
  • [4] Influence of μ-size WC on the Corrosion Behavior of Ultrafine WC/WC-Co Cemented Carbides
    Liu, Chao
    Liu, Yang
    Ma, Yunzhu
    Liu, Wensheng
    He, Yuehui
    JOURNAL OF SUPERHARD MATERIALS, 2019, 41 (05) : 334 - 344
  • [5] INFLUENCE OF THE MICROSTRUCTURE OF WC-CO CEMENTED CARBIDES ON THE FRACTURE-TOUGHNESS AND ABRASIVE WEAR
    ZUMGAHR, KH
    FISCHER, A
    METALL, 1981, 35 (01): : 38 - 44
  • [6] Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni
    P. Jewell
    L. Shannahan
    S. Pagano
    R. DeMott
    M. Taheri
    L. Lamberson
    International Journal of Fracture, 2017, 208 : 203 - 219
  • [7] Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni
    Jewell, P.
    Shannahan, L.
    Pagano, S.
    DeMott, R.
    Taheri, M.
    Lamberson, L.
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 208 (1-2) : 203 - 219
  • [8] Superplastic behavior and cavitation for WC-Co cemented carbides
    Hosokawa, H
    Shimojima, K
    Kawakami, M
    Sano, S
    Terada, O
    Mabuchi, M
    PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-5, 2005, 475-479 : 2991 - 2994
  • [9] Role of the Co phase in superplasticity for WC-Co cemented carbides
    Hosokawa, H
    Shimojima, K
    Kawakami, M
    Sano, S
    Terada, O
    Mabuchi, M
    MATERIALS TRANSACTIONS, 2004, 45 (04) : 1391 - 1394
  • [10] Coercive Force of γ-Phase in WC-Co Cemented Carbides
    刘寿荣
    孙景
    RARE METALS, 1994, (04) : 299 - 301