On the Mordell-Weil Groups of Jacobians of Hyperelliptic Curves over Certain Elementary Abelian 2-extensions

被引:0
|
作者
Moon, Hyunsuk [1 ]
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Math, Daegu 702701, South Korea
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 03期
关键词
Mordell-Weil groups; hyperelliptic curves;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be the Jacobian variety of a hyperelliptic curve over Q. Let M be the field generated by all square roots of rational integers over a finite number field K. Then we prove that the Mordell-Weil group J(M) is the direct sum of a finite torsion group and a free Z-module of infinite rank. In particular, J(M) is not a divisible group. On the other hand, if (M) over tilde is an extension of M which contains all the torsion points of J over (Q) over bar, then J((M) over tilde (sol))/J((M) over tilde (sol))(tors) is a divisible group of infinite rank, where (M) over tilde (sol) is the maximal solvable extension of (M) over tilde.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 50 条