Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

被引:2
|
作者
Mahmoodabadi, M. J. [1 ]
Taherkhorsandi, M. [2 ]
Safikhani, H. [3 ]
机构
[1] Sirjan Univ Technol, Dept Mech Engn, Sirjan, Iran
[2] Islamic Azad Univ, Rasht Branch, Young Researchers Club, Rasht, Iran
[3] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2013年 / 26卷 / 09期
关键词
Two-phase Flow; Gas-solid; Particle Swarm Optimization; Multi-objective Optimization; GMDH;
D O I
10.5829/idosi.ije.2013.26.09c.15
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, a three-step multi-objective optimization algorithm of cyclone separators is utilized for the design objectives. First, the pressure drop (Delta p) and collection efficiency (eta) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Delta p and eta as the required functions of geometrical characteristics. Finally, a multi-objective (MO) algorithm based on hybrid of Particle Swarm Optimization (PSO), multiple crossover and mutation operator are used for Pareto based optimization of cyclones considering two conflicting objectives Delta p and eta. By comparing the Pareto results of MOPSO with that of multi-objective genetic algorithms (NSGA II) regarding Pareto based multi-objective optimization of the obtained polynomial meta-models, it is shown that there are some interesting and important relationships as useful optimal design principles involved in the performance of cyclone separators.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 50 条
  • [1] Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-Objective Optimization
    Elhossini, Ahmed
    Areibi, Shawki
    Dony, Robert
    EVOLUTIONARY COMPUTATION, 2010, 18 (01) : 127 - 156
  • [2] Optimization of Warpage on Plastic Part by Using Particle Swarm Optimization (PSO) Method
    Hidayah, M. H. N.
    Shayfull, Z.
    Noriman, N. Z.
    Sazli, S. M.
    Norshahira, R.
    Miza, A. T. N. A.
    GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS, 2018, 2030
  • [3] ONLINE VELOCITY OPTIMIZATION OF ROBOTIC SWARM FLOCKING USING PARTICLE SWARM OPTIMIZATION (PSO) METHOD
    Vatankhah, Ramin
    Etemadi, Shahram
    Honarvar, Mohammad
    Alasty, Aria
    Boroushaki, Mehrdad
    Vossoughi, Gholamreza
    2009 6TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA), 2009, : 13 - 18
  • [4] Design of Gas Cyclone Using Hybrid Particle Swarm Optimization Algorithm
    Shen, Xueli
    Ihenacho, Daniel C.
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [5] Hybrid particle swarm optimization and group method of data handling for short-term prediction of natural daily streamflows
    Danilo P. M. Souza
    Alfeu D. Martinho
    Caio C. Rocha
    Eliane da S. Christo
    Leonardo Goliatt
    Modeling Earth Systems and Environment, 2022, 8 : 5743 - 5759
  • [6] Hybrid particle swarm optimization and group method of data handling for short-term prediction of natural daily streamflows
    Souza, Danilo P. M.
    Martinho, Alfeu D.
    Rocha, Caio C.
    da S. Christo, Eliane
    Goliatt, Leonardo
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 5743 - 5759
  • [7] Modeling global solar radiation using Particle Swarm Optimization (PSO)
    Mohandes, Mohamed Ahmed
    SOLAR ENERGY, 2012, 86 (11) : 3137 - 3145
  • [8] Cutting parameters optimization by using particle swarm optimization (PSO)
    Li, J. G.
    Yao, Y. X.
    Gao, D.
    Liu, C. Q.
    Yuan, Z. J.
    E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY, 2008, 10-12 : 879 - +
  • [9] A hybrid particle swarm optimization method
    Wang, X.
    Gao, X. Z.
    Ovaska, S. J.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 4151 - +
  • [10] PSO plus : A Nonlinear Constraints-Handling Particle Swarm Optimization
    Kohler, Manoela
    Forero, Leonardo
    Vellasco, Marley
    Tanscheit, Ricardo
    Pacheco, Marco Aurelio
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2518 - 2523