BIFURCATIONS AND CHAOS IN A PERIODIC PREDATOR-PREY MODEL

被引:71
|
作者
Kuznetsov, Yu A. [1 ]
Muratori, S. [2 ]
Rinaldi, S. [3 ]
机构
[1] Russian Acad Sci, Ctr Res Comp, Pushchino 142292, Moscow Region, Russia
[2] Politecn Milan, CNR, Ctr Teoria Sistemi, I-20133 Milan, Italy
[3] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy
来源
关键词
D O I
10.1142/S0218127492000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The model most often used by ecologists to describe interactions between predator and prey populations is analyzed in this paper with reference to the case of periodically varying parameters. A complete bifurcation diagram for periodic solutions of period one and two is obtained by means of a continuation technique. The results perfectly agree with the local theory of periodically forced Hopf bifurcation. The two classical routes to chaos, i.e., cascade of period doublings and torus destruction, are numerically detected.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条
  • [1] Discrete-Time Predator-Prey Model with Bifurcations and Chaos
    Al-Basyouni, K. S.
    Khan, A. Q.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [2] Bifurcations, chaos, and multistability in a nonautonomous predator-prey model with fear
    Hossain, Mainul
    Pal, Saheb
    Kumar Tiwari, Pankaj
    Pal, Nikhil
    CHAOS, 2021, 31 (12) : 123134
  • [3] Bifurcations and chaos in a predator-prey system with the Allee effect
    Morozov, A
    Petrovskii, S
    Li, BL
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1546) : 1407 - 1414
  • [4] SPIRAL CHAOS IN A PREDATOR-PREY MODEL
    GILPIN, ME
    AMERICAN NATURALIST, 1979, 113 (02): : 306 - 308
  • [5] Bifurcations in a predator-prey model with diffusion and memory
    Aly, Shaban
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (06): : 1855 - 1863
  • [6] Hopf Bifurcations in a Predator-Prey Model with an Omnivore
    Li, Yongjun
    Romanovski, Valery G.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 1201 - 1224
  • [7] Bifurcations and Pattern Formation in a Predator-Prey Model
    Cai, Yongli
    Gui, Zhanji
    Zhang, Xuebing
    Shi, Hongbo
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (11):
  • [8] BIFURCATIONS OF EQUILIBRIA IN BAZYKIN PREDATOR-PREY MODEL
    METZLER, W
    WISCHNIEWSKY, W
    MATHEMATICAL MODELLING, 1985, 6 (02): : 111 - 123
  • [9] Bifurcations and Marotto's chaos of a discrete Lotka-Volterra predator-prey model
    Li, Yanan
    Liu, Lingling
    Chen, Yujiang
    Yu, Zhiheng
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [10] Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay
    Sui, Mengting
    Du, Yanfei
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09): : 5124 - 5150