Assimilating the LAI Data to the VEGAS Model Using the Local Ensemble Transform Kalman Filter: An Observing System Simulation Experiment

被引:0
|
作者
Jia Bing-Hao [1 ]
Zeng, Ning [2 ,3 ]
Xie Zheng-Hui [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China
[2] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
carbon cycle; data assimilation; VEGAS; land-atmosphere CO2 flux; LETKF; OSSE;
D O I
10.3878/j.issn.1674-2834.13.0094
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Information on the spatial and temporal patterns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil (VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter (LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment (OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index (LAI) observations suggest that the LETKF -VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity (NPP) and carbon flux to atmosphere (CFta).
引用
收藏
页码:314 / 319
页数:6
相关论文
共 50 条
  • [1] Assimilating the LAI Data to the VEGAS Model Using the Local Ensemble Transform Kalman Filter: An Observing System Simulation Experiment
    JIA Bing-Hao
    Ning ZENG
    XIE Zheng-Hui
    AtmosphericandOceanicScienceLetters, 2014, 7 (04) : 314 - 319
  • [2] Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments
    Tsai, Chih-Chien
    Yang, Shu-Chih
    Liou, Yu-Chieng
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2014, 66
  • [3] A local ensemble transform Kalman filter data assimilation system for the NCEP global model
    Szunyogh, Istvan
    Kostelich, Eric J.
    Gyarmati, Gyorgyi
    Kalnay, Eugenia
    Hunt, Brian R.
    Ott, Edward
    Satterfield, Elizabeth
    Yorke, James A.
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (01) : 113 - 130
  • [4] Ensemble Kalman Filter Data Assimilation into the Surface Flux Transport Model to Infer Surface Flows: An Observing System Simulation Experiment
    Dash, Soumyaranjan
    Derosa, Marc L.
    Dikpati, Mausumi
    Sun, Xudong
    Mahajan, Sushant S.
    Liu, Yang
    Hoeksema, J. Todd
    ASTROPHYSICAL JOURNAL, 2024, 975 (02):
  • [5] Assimilating Observation Data into Hydrological Model with Ensemble Kalman Filter
    Xiong, Jun
    Huang, Xiaolan
    Cao, Zengyan
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 3632 - +
  • [6] Improving Soil Salinity Simulation by Assimilating Electromagnetic Induction Data into HYDRUS Model Using Ensemble Kalman Filter
    Yao, R. J.
    Yang, J. S.
    Wang, X. P.
    Zhao, Y.
    Li, H. Q.
    Gao, P.
    Xie, W. P.
    Zhang, X.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2022, 39 (02) : 81 - 96
  • [7] A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor
    Hoffman, Ross N.
    Ponte, Rui M.
    Kostelich, Eric J.
    Blumberg, Alan
    Szunyogh, Istvan
    Vinogradov, Sergey V.
    Henderson, John M.
    Journal of Atmospheric and Oceanic Technology, 2008, 25 (09): : 1638 - 1656
  • [8] A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor
    Hoffman, Ross N.
    Ponte, Rui M.
    Kostelich, Eric J.
    Blumberg, Alan
    Szunyogh, Istvan
    Vinogradov, Sergey V.
    Henderson, John M.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (09) : 1638 - 1656
  • [9] Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter
    Quaife, Tristan
    Lewis, Philip
    De Kauwe, Martin
    Williams, Mathew
    Law, Beverly E.
    Disney, Mathias
    Bowyer, Paul
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1347 - 1364
  • [10] Data assimilation using a climatologically augmented local ensemble transform Kalman filter
    Kretschmer, Matthew
    Hunt, Brian R.
    Ott, Edward
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67 : 1 - 9