A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain

被引:1
|
作者
Li, Sheng-Hao [1 ]
Rivas, Ivonne [2 ]
Zhang, Bing-Yu [3 ,4 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Valle, Dept Math, Cali, Colombia
[3] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45220 USA
[4] Sichuan Univ, Coll Math, Chengdu, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2016年 / 49卷 / 03期
关键词
Boussinesq equation; initial-boundary value problem; local well-posedness;
D O I
10.4208/jms.v49n3.16.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the well-posedness of an initial-boundary-value problem (IBVP) for the Boussinesq equation on a bounded domain, {u(tt) - u(xx) + (u(2))(xx) + u(xxxx) = 0, x is an element of(0,1), t > 0, u(x,0) = phi(x), u(t)(x,0) = psi(x), u(0,t) = h(1)(t), u(1,t) = h(2)(t), u(xx)(0,t) = h(3)(t), u(xx)(1,t) = h(4)(t). It is shown that the IBVP is locally well-posed in the space H-s(0,1) for any s >= 0 with the initial data phi, psi lie in Hs(0,1) and Hs-2(0,1), respectively, and the naturally compatible boundary data h(1), h(2) in the space H-loc((s + 1)/2)(R+), and h(3), h(4) in the the space of H-loc((s-1)/2)(R+) with optimal regularity.
引用
收藏
页码:238 / 258
页数:21
相关论文
共 50 条