BIOTURBATION - A FACILITATOR OF CONTAMINANT TRANSPORT IN BED SEDIMENT

被引:30
|
作者
BOSWORTH, WS
THIBODEAUX, LJ
机构
[1] Balsam Environmental Consultants, Inc., Salem, New Hampshire, 03079
[2] Hazardous Waste Research Center, Louisiana State University, Baton Rouge, Louisiana
来源
ENVIRONMENTAL PROGRESS | 1990年 / 9卷 / 04期
关键词
D O I
10.1002/ep.670090414
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The biological activity of benthic organisms (=bioturbation) in bed sediments can be significantly more important than physicochemical processes in the movement of sediment particles and interstitial constituents within the sediment column and to the overlying water. Bioturbation‐driven transport processes may be several orders of magnitude more rapid than molecular‐driven processes for some constituents, i.e., particle reactive compounds like PCB, when considered on a chemical pore water concentration gradient basis. Benthic organisms affect particle redistribution and solute transport by burrowing, ingestion/excretion, tube‐building and biodeposition. In most benthic environments, whether freshwater, estuarine or marine, numbers of organisms and rates of sediment turnover are highest in the oxygenated zone above the redox boundary, generally the top 2–5 cm of the sediment column. However, a variety of organisms penetrate deeper into the sediment and may also be important in transport of both dissolved and particle reactive constituents. When considering capping of contaminated sediment in place or capping of contaminated dredge spoils, the effects of bioturbation on the mobility of the contaminants must first be considered before establishing engineering design criteria. Capping of contaminated bed sediments or dredge spoils can elevate the bioturbated zone above the contaminated bed sediment and thus potentially reduce the rate of contaminant transport by several orders of magnitude. Copyright © 1990 American Institute of Chemical Engineers (AIChE)
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [1] Bioturbation driven transport of hydrophobic organic contaminants from bed-sediment.
    Thibodeaux, L
    Valsaraj, KT
    Reible, DD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U342 - U342
  • [2] Bioturbation-driven transport of hydrophobic organic contaminants from bed sediment
    Thibodeaux, LJ
    Valsaraj, KT
    Reible, DD
    ENVIRONMENTAL ENGINEERING SCIENCE, 2001, 18 (04) : 215 - 223
  • [3] Contaminant fluxes from sediment due to tubificid oligochaete bioturbation
    Reible, DD
    Popov, V
    Valsaraj, KT
    Thibodeaux, LJ
    Lin, F
    Dikshit, M
    Todaro, MA
    Fleeger, JW
    WATER RESEARCH, 1996, 30 (03) : 704 - 714
  • [4] THE EFFECTS OF BIOTURBATION ON SEDIMENT TRANSPORT ON AN INTERTIDAL MUDFLAT
    GRANT, J
    DABORN, G
    NETHERLANDS JOURNAL OF SEA RESEARCH, 1994, 32 (01): : 63 - 72
  • [5] The effects of bioturbation on soil processes and sediment transport
    Gabet, EJ
    Reichman, OJ
    Seabloom, EW
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2003, 31 : 249 - 273
  • [6] Sediment-contaminant transport model
    Onishi, Y.
    1981, 107 (09): : 1089 - 1107
  • [7] SEDIMENT-CONTAMINANT TRANSPORT MODEL
    ONISHI, Y
    ASCE, M
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1981, 107 (09): : 1089 - 1107
  • [8] Suspended sediment structure: implications for sediment and contaminant transport modelling
    Droppo, IG
    Walling, DE
    Ongley, ED
    MODELLING SOIL EROSION, SEDIMENT TRANSPORT AND CLOSELY RELATED HYDROLOGICAL PROCESSES, 1998, (249): : 437 - 444
  • [9] SEDIMENT-CONTAMINANT TRANSPORT MODEL - DISCUSSION
    SHIBA, S
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1983, 109 (05): : 768 - 771
  • [10] SEASONAL CYCLING OF ESTUARINE SEDIMENT AND CONTAMINANT TRANSPORT
    UNCLES, RJ
    STEPHENS, JA
    WOODROW, TY
    ESTUARIES, 1988, 11 (02): : 108 - 116