ON THE ESSENTIAL APPROXIMATE POINT SPECTRUM OF OPERATORS

被引:1
|
作者
MULLER, V [1 ]
机构
[1] CZECHOSLOVAK ACAD SCI, INST MATH, CS-11567 PRAGUE 1, CZECHOSLOVAKIA
关键词
D O I
10.1007/BF01203126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If lambda belongs to the essential approximate point spectrum of a Banach space operator T is-an-element-of B(X) and {a(j)}j=0 infinity is a sequence of positive numbers with lim(j --> infinity) a(j) = 0, then there exists x is-an-element-of X such that \\p(T)x\\ greater-than-or-equal-to a(deg p) p(lambda)\ for every polynomial p. This result is the best possible - if \\p(T)x\\ greater-than-or-equal-to c\p(lambda)\ for some constant c > 0 then T has already a non-trivial invariant subspace, which is not true in general.
引用
收藏
页码:1033 / 1041
页数:9
相关论文
共 50 条