Testing, Diagnosing, Repairing, and Predicting from Regulatory Networks and Datasets

被引:0
|
作者
Schaub, Torsten [1 ]
Siegel, Anne [2 ]
机构
[1] Univ Potsdam, Potsdam, Germany
[2] CNRS, IRISA, Rennes, France
来源
ERCIM NEWS | 2010年 / 82期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We use expressive and highly efficient tools from the area of Knowledge Representation for dealing with contradictions occurring when confronting observations in large-scale (omic) datasets with information carried by regulatory networks.
引用
收藏
页码:30 / 31
页数:2
相关论文
共 50 条
  • [1] Inferring gene regulatory networks from multiple microarray datasets
    Wang, Yong
    Joshi, Trupti
    Zhang, Xiang-Sun
    Xu, Dong
    Chen, Luonan
    BIOINFORMATICS, 2006, 22 (19) : 2413 - 2420
  • [2] TESTING AND DIAGNOSING MANAGED NETWORKS
    MCREE, R
    IEEE DESIGN & TEST OF COMPUTERS, 1995, 12 (04): : 68 - 80
  • [3] Robust Inference of Gene Regulatory Networks from Multiple Microarray Datasets
    Liu, Li-Zhi
    Wu, Fang-Xiang
    Zhang, Wen-Jun
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [4] Predicting gene regulatory networks from cell atlases
    Moller, Andreas Fonss
    Natarajan, Kedar Nath
    LIFE SCIENCE ALLIANCE, 2020, 3 (11)
  • [5] Reconstruction of Gene Regulatory Networks Using Multiple Datasets
    Saremi, Mehrzad
    Amirmazlaghani, Maryam
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1827 - 1839
  • [6] CRMnet: A deep learning model for predicting gene expression from large regulatory sequence datasets
    Ding, Ke
    Dixit, Gunjan
    Parker, Brian J.
    Wen, Jiayu
    FRONTIERS IN BIG DATA, 2023, 6
  • [7] Predicting Diabetes in Imbalanced Datasets using Neural Networks
    Guan, Hannah
    Zhang, Chonghao
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,
  • [8] Predicting streamflow with LSTM networks using global datasets
    Wilbrand, Katharina
    Taormina, Riccardo
    ten Veldhuis, Marie-Claire
    Visser, Martijn
    Hrachowitz, Markus
    Nuttall, Jonathan
    Dahm, Ruben
    FRONTIERS IN WATER, 2023, 5
  • [9] Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets
    Mochida, Keiichi
    Koda, Satoru
    Inoue, Komaki
    Nishii, Ryuei
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [10] Predicting attractors from spectral properties of stylized gene regulatory networks
    Rumiantsau, Dzmitry
    Lesne, Annick
    Hutt, Marc-Thorsten
    PHYSICAL REVIEW E, 2023, 108 (01)