首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
ETERNAL SOLUTIONS TO THE RICCI FLOW
被引:3
|
作者
:
HAMILTON, RS
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
HAMILTON, RS
[
1
]
机构
:
[1]
UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
来源
:
JOURNAL OF DIFFERENTIAL GEOMETRY
|
1993年
/ 38卷
/ 01期
关键词
:
D O I
:
暂无
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
[1]
Eternal solutions to the Ricci flow on R2
Daskalopoulos, P.
论文数:
0
引用数:
0
h-index:
0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Columbia Univ, Dept Math, New York, NY 10027 USA
Daskalopoulos, P.
Sesum, N.
论文数:
0
引用数:
0
h-index:
0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Columbia Univ, Dept Math, New York, NY 10027 USA
Sesum, N.
INTERNATIONAL MATHEMATICS RESEARCH NOTICES,
2006,
2006
[2]
Non-existence of eternal solutions to Lagrangian mean curvature flow with non-negative Ricci curvature
Keita Kunikawa
论文数:
0
引用数:
0
h-index:
0
机构:
Tohoku University,Advanced Institute for Materials Research
Keita Kunikawa
Geometriae Dedicata,
2019,
201
: 369
-
377
[3]
Non-existence of eternal solutions to Lagrangian mean curvature flow with non-negative Ricci curvature
Kunikawa, Keita
论文数:
0
引用数:
0
h-index:
0
机构:
Tohoku Univ, Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808578, Japan
Tohoku Univ, Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808578, Japan
Kunikawa, Keita
GEOMETRIAE DEDICATA,
2019,
201
(01)
: 369
-
377
[4]
Ancient solutions to the Kahler Ricci flow
Li, Yu
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sci & Technol China, Inst Geometry & Phys, Hefei, Anhui, Peoples R China
Hefei Natl Lab, Hefei, Anhui, Peoples R China
Univ Sci & Technol China, Inst Geometry & Phys, Hefei, Anhui, Peoples R China
Li, Yu
GEOMETRY & TOPOLOGY,
2024,
28
(07)
: 3257
-
3283
[5]
Ancient solutions of the Ricci flow on bundles
Lu, Peng
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Oregon, Dept Math, Eugene, OR 97403 USA
Univ Oregon, Dept Math, Eugene, OR 97403 USA
Lu, Peng
Wang, Y. K.
论文数:
0
引用数:
0
h-index:
0
机构:
McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
Univ Oregon, Dept Math, Eugene, OR 97403 USA
Wang, Y. K.
ADVANCES IN MATHEMATICS,
2017,
318
: 411
-
456
[6]
A COMPACTNESS PROPERTY FOR SOLUTIONS OF THE RICCI FLOW
HAMILTON, RS
论文数:
0
引用数:
0
h-index:
0
HAMILTON, RS
AMERICAN JOURNAL OF MATHEMATICS,
1995,
117
(03)
: 545
-
572
[7]
A comparison principle for solutions to the Ricci flow
Bamler, Richard H.
论文数:
0
引用数:
0
h-index:
0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Bamler, Richard H.
Brendle, Simon
论文数:
0
引用数:
0
h-index:
0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Brendle, Simon
MATHEMATICAL RESEARCH LETTERS,
2015,
22
(04)
: 983
-
988
[8]
Limits of solutions to the Kahler-Ricci flow
Cao, HD
论文数:
0
引用数:
0
h-index:
0
Cao, HD
JOURNAL OF DIFFERENTIAL GEOMETRY,
1997,
45
(02)
: 257
-
272
[9]
Ancient solutions to the Ricci flow in dimension 3
Brendle, Simon
论文数:
0
引用数:
0
h-index:
0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Brendle, Simon
ACTA MATHEMATICA,
2020,
225
(01)
: 1
-
102
[10]
Ancient solutions to Kahler-Ricci flow
Ni, L
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Ni, L
MATHEMATICAL RESEARCH LETTERS,
2005,
12
(5-6)
: 633
-
653
←
1
2
3
4
5
→