HAMILTON PATHS IN GRID GRAPHS

被引:333
|
作者
ITAI, A
PAPADIMITRIOU, CH
SZWARCFITER, JL
机构
[1] UNIV CALIF BERKELEY, DEPT ELECT ENGN & COMP SCI, BERKELEY, CA 94720 USA
[2] MIT, COMP SCI LAB, CAMBRIDGE, MA 02139 USA
[3] NATL TECH UNIV ATHENS, GR-147 ATHENS, GREECE
[4] UNIV FED RIO DE JANEIRO, RIO DE JANEIRO, RJ, BRAZIL
关键词
D O I
10.1137/0211056
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:676 / 686
页数:11
相关论文
共 50 条
  • [1] Hamilton paths in toroidal graphs
    Thomas, R
    Yu, XX
    Zang, WN
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) : 214 - 236
  • [2] HAMILTON CYCLES AND PATHS IN BUTTERFLY GRAPHS
    WONG, SA
    NETWORKS, 1995, 26 (03) : 145 - 150
  • [3] Hamilton paths in generalized Petersen graphs
    Richter, R. Bruce
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1338 - 1341
  • [4] Hamilton paths in certain arithmetic graphs
    Russell, PA
    ARS COMBINATORIA, 2005, 77 : 305 - 309
  • [5] On Contact Graphs of Paths on a Grid
    Deniz, Zakir
    Galby, Esther
    Munaro, Andrea
    Ries, Bernard
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 317 - 330
  • [6] CYCLE DOUBLE COVERS OF GRAPHS WITH HAMILTON PATHS
    GODDYN, LA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) : 253 - 254
  • [7] Hamilton Paths in Dominating Graphs of Trees and Cycles
    Kira Adaricheva
    Heather Smith Blake
    Chassidy Bozeman
    Nancy E. Clarke
    Ruth Haas
    Margaret-Ellen Messinger
    Karen Seyffarth
    Graphs and Combinatorics, 2022, 38
  • [8] Hamilton Paths in Dominating Graphs of Trees and Cycles
    Adaricheva, Kira
    Blake, Heather Smith
    Bozeman, Chassidy
    Clarke, Nancy E.
    Haas, Ruth
    Messinger, Margaret-Ellen
    Seyffarth, Karen
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [9] The location of median paths on grid graphs
    Becker, Ronald I.
    Lari, Isabella
    Scozzari, Andrea
    Storchi, Giovanni
    ANNALS OF OPERATIONS RESEARCH, 2007, 150 (01) : 65 - 78
  • [10] Approximating the longest paths in grid graphs
    Zhang, Wen-Qi
    Liu, Yong-Jin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5340 - 5350