STABILITY AND SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL PROBLEMS. A SURVEY

被引:0
|
作者
Malanowski, K. [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
来源
关键词
Stability and sensitivity analysis; optimal control; ordinary differential equations; control and state constraints;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general methodology used in stability and sensitivity analysis for optimization problems is outlined, with emphasis on similarities and differences between equality and cone-constrained problems, respectively. The application of that methodology to nonlinear optimal control problems subject to control and state constraints is shortly described.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 50 条
  • [1] STABILITY AND SENSITIVITY ANALYSIS OF DISCRETE OPTIMAL-CONTROL PROBLEMS
    MALANOWSKI, K
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1991, 20 (03): : 187 - 200
  • [2] ON MULTISTAGE STOCHASTIC OPTIMAL CONTROL PROBLEMS.
    Berkovich, Ye.M.
    Engineering Cybernetics (English translation of Tekhnicheskaya Kibernetika), 1975, 13 (01): : 8 - 15
  • [3] ON MULTICRITERION OPTIMIZATION IN OPTIMAL CONTROL PROBLEMS.
    Blatnik, J.
    1600, (14):
  • [4] Sensitivity analysis for discrete optimal control problems
    Marinkovic, Boban
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (03) : 513 - 524
  • [5] Sensitivity analysis of hyperbolic optimal control problems
    Adam Kowalewski
    Irena Lasiecka
    Jan Sokołowski
    Computational Optimization and Applications, 2012, 52 : 147 - 179
  • [6] Sensitivity analysis for discrete optimal control problems
    Boban Marinković
    Mathematical Methods of Operations Research, 2006, 63 : 513 - 524
  • [7] Sensitivity analysis of hyperbolic optimal control problems
    Kowalewski, Adam
    Lasiecka, Irena
    Sokolowski, Jan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) : 147 - 179
  • [8] Minimax optimal control problems.: Numerical analysis of the finite horizon case
    Di Marco, SC
    González, RLV
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (01): : 23 - 54
  • [9] INTEGRAL MANIFOLDS AND SOME OPTIMAL CONTROL PROBLEMS.
    Sobolev, V.A.
    Periodica Polytechnica Mechanical Engineering, 1987, 31 (01): : 87 - 102
  • [10] OPTIMAL SYNTHESIS IN CERTAIN TERMINAL CONTROL PROBLEMS.
    Akulenko, L.D.
    Journal of Applied Mathematics and Mechanics, 1978, 42 (06): : 1081 - 1092