CONNECTIVITY THRESHOLD FOR RANDOM CHORDAL GRAPHS

被引:11
|
作者
MCMORRIS, FR
SCHEINERMAN, ER
机构
[1] UNIV LOUISVILLE,DEPT MATH,LOUISVILLE,KY 40292
[2] JOHNS HOPKINS UNIV,DEPT MATH SCI,BALTIMORE,MD 21218
关键词
D O I
10.1007/BF01788142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a model for random chordal graphs. We determine the thresholds for: the first edge, completeness, isolated vertices and connectivity. Like the Erdos-Renyi model, the thresholds for isolated vertices and connectivity are the same. Unlike the Erdos-Renyi model in which the threshold occurs at 1/2 n log n edges, this threshold occurs at O(n2) edges.
引用
收藏
页码:177 / 181
页数:5
相关论文
共 50 条
  • [1] ACQUAINTANCE TIME OF RANDOM GRAPHS NEAR CONNECTIVITY THRESHOLD
    Dudek, Andrzej
    Pralat, Pawel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 555 - 568
  • [2] Acquaintance time of random graphs near connectivity threshold
    Department of Mathematics, Western Michigan University, Kalamazoo
    MI
    49008, United States
    不详
    ON, Canada
    SIAM J Discrete Math, 1600, 1 (555-568):
  • [3] Edge connectivity vs vertex connectivity in chordal graphs
    Chandran, LS
    COMPUTING AND COMBINATORICS, 2001, 2108 : 384 - 389
  • [4] The connectivity threshold of random geometric graphs with Cantor distributed vertices
    Bandyopadhyay, Antar
    Sajadi, Farkhondeh
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2103 - 2107
  • [5] Maximum chordal subgraphs of random graphs
    Krivelevich, Michael
    Zhukovskii, Maksim
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (05) : 611 - 623
  • [6] Random threshold graphs with exponential fitness: The width of the phase transition for connectivity
    Makowski, Armand M.
    Yagan, Osman
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 61 - +
  • [7] CONNECTIVITY OF RANDOM GRAPHS
    DOREA, CCY
    JOURNAL OF APPLIED PROBABILITY, 1982, 19 (04) : 880 - 884
  • [8] Random Threshold Graphs
    Reilly, Elizabeth Perez
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [9] Connectivity Threshold of Bluetooth Graphs
    Broutin, Nicolas
    Devroye, Luc
    Fraiman, Nicolas
    Lugosi, Gabor
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (01) : 45 - 66
  • [10] Group Connectivity of 3-Edge-Connected Chordal Graphs
    Hong-Jian Lai
    Graphs and Combinatorics, 2000, 16 (2) : 165 - 176