ArchimedesOne: Query Processing over Probabilistic Knowledge Bases

被引:6
|
作者
Zhou, Xiaofeng [1 ]
Chen, Yang [1 ]
Wang, Daisy Zhe [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2016年 / 9卷 / 13期
关键词
D O I
10.14778/3007263.3007284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge bases are becoming increasingly important in structuring and representing information from the web. Meanwhile, webscale information poses significant scalability and quality challenges to knowledge base systems. To address these challenges, we develop a probabilistic knowledge base system, ARCHIMEDESONE, by scaling up the knowledge expansion and statistical inference algorithms. We design a web interface for users to query and update large knowledge bases. In this paper, we demonstrate the ARCHIMEDESONE system to showcase its efficient query and inference engines. The demonstration serves two purposes: 1) to provide an interface for users to interact with ARCHIMEDESONE through load, search, and update queries; and 2) to validate our approaches of knowledge expansion by applying inference rules in batches using relational operations and query-driven inference by focusing computation on the query facts. We compare ARCHIMEDESONE with state-of-the-art approaches using two knowledge bases: NELL-sports with 4.5 million facts and Reverb-Sherlock with 15 million facts.
引用
收藏
页码:1461 / 1464
页数:4
相关论文
共 50 条
  • [1] Archimedes: Efficient Query Processing over Probabilistic Knowledge Bases
    Chen, Yang
    Zhou, Xiaofeng
    Li, Kun
    Wang, Daisy Zhe
    SIGMOD RECORD, 2017, 46 (02) : 30 - 35
  • [2] Query answering over inconsistent knowledge bases: A probabilistic approach
    Calautti, Marco
    Greco, Sergio
    Molinaro, Cristian
    Trubitsyna, Irina
    THEORETICAL COMPUTER SCIENCE, 2022, 935 : 144 - 173
  • [3] Knowledge Expansion over Probabilistic Knowledge Bases
    Chen, Yang
    Wang, Daisy Zhe
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 649 - 660
  • [4] Efficient query processing with compiled knowledge bases
    Murray, NV
    Rosenthal, E
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 2005, 3702 : 231 - 244
  • [5] A query processing method for amalgamated knowledge bases
    He, LF
    Chao, YY
    Nakamura, T
    Seki, H
    Itoh, H
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1999, E82D (08): : 1180 - 1189
  • [6] Temporalizing rewritable query languages over knowledge bases
    Borgwardt, Stefan
    Lippmann, Marcel
    Thost, Veronika
    JOURNAL OF WEB SEMANTICS, 2015, 33 : 50 - 70
  • [7] Keyword Query over Error-Tolerant Knowledge Bases
    Cheng, Yu-Rong
    Yuan, Ye
    Li, Jia-Yu
    Chen, Lei
    Wang, Guo-Ren
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2016, 31 (04) : 702 - 719
  • [8] Deep Query Ranking for Question Answering over Knowledge Bases
    Zafar, Hamid
    Napolitano, Giulio
    Lehmann, Jens
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 635 - 638
  • [9] Reasoning over Linear Probabilistic Knowledge Bases with Priorities
    Potyka, Nico
    SCALABLE UNCERTAINTY MANAGEMENT (SUM 2015), 2015, 9310 : 121 - 136
  • [10] Computing Approximate Query Answers over Inconsistent Knowledge Bases
    Greco, Sergio
    Molinaro, Cristian
    Trubitsyna, Irina
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1838 - 1846