Solution of Cubic-Quintic Duffing Oscillators using Harmonic Balance Method

被引:0
|
作者
Hosen, M. A. [1 ,2 ]
Chowdhury, M. S. H. [2 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Math, Rajshahi 6204, Bangladesh
[2] Int Islam Univ Malaysia, Kulliyyah Engn, Dept Engn Sci, Kuala Lumpur 50728, Malaysia
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2016年 / 10卷
关键词
Approximate frequency; Harmonic balance method; Cubicquintic Duffing oscillator; Analytical solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, Harmonic Balance Method (HBM) is applied to determine approximate analytic solutions of strongly nonlinear Duffing oscillators with cubic-quintic nonlinear restoring force. Mainly, a set of nonlinear algebraic equations is solved in this method. The new method avoids the necessity of numerically solving sets of algebraic equations with very complex nonlinearities. Numerical comparisons between the HBM and the exact solutions reveal that the HBM is a promising tool for strongly nonlinear oscillator's problems.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 50 条
  • [1] Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method
    D.D.GANJI
    M.GORJI
    S.SOLEIMANI
    M.ESMAEILPOUR
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (09) : 1263 - 1268
  • [2] Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method
    D. D. Ganji
    M. Gorji
    S. Soleimani
    M. Esmaeilpour
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1263 - 1268
  • [3] Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method
    Ganji, D. D.
    Gorji, M.
    Soleimani, S.
    Esmaeilpour, M.
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (09): : 1263 - 1268
  • [4] Gamma function method for the nonlinear cubic-quintic Duffing oscillators
    Wang, Kang-Jia
    Wang, Guo-Dong
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 216 - 222
  • [5] A PERTURBATIVE ANALYSIS OF NONLINEAR CUBIC-QUINTIC DUFFING OSCILLATORS
    Sayevand, Khosro
    Baleanu, Dumitru
    Fardi, Mojtaba
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (03): : 228 - 234
  • [6] Exact solution of the cubic-quintic Duffing oscillator
    Elias-Zuniga, Alex
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 2574 - 2579
  • [7] Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators
    Lai, S. K.
    Lim, C. W.
    Wu, B. S.
    Wang, C.
    Zeng, Q. C.
    He, X. F.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (02) : 852 - 866
  • [8] Analytical Solution to the Damped Cubic-Quintic Duffing Equation
    Salas, Alvaro H.
    El-Tantawy, S. A.
    Castillo, Jairo H.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 425 - 430
  • [9] ANALYTICAL SOLUTION OF THE FRACTAL CUBIC-QUINTIC DUFFING EQUATION
    Elias-Zuniga, Alex
    Manuel Palacios-Pineda, Luis
    Jimenez-Cedeno, Isaac H.
    Martinez-Romero, Oscar
    Olvera-Trejo, Daniel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [10] Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
    Karahan, M. M. Fatih
    Pakdemirli, Mehmet
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (01): : 59 - 69