HIGHER REGULARITY OF THE SOLUTION TO THE P-LAPLACIAN OBSTACLE PROBLEM

被引:12
|
作者
MU, J
机构
[1] Department of Mathematics, Indiana University, Bloomington
关键词
D O I
10.1016/0022-0396(92)90036-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:370 / 384
页数:15
相关论文
共 50 条
  • [1] Optimal regularity for the obstacle problem for the p-Laplacian
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2167 - 2179
  • [2] On the regularity of the free boundary in the p-Laplacian obstacle problem
    Figalli, Alessio
    Krummel, Brian
    Ros-Oton, Xavier
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (03) : 1931 - 1945
  • [3] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Silvia Frassu
    Eugénio M. Rocha
    Vasile Staicu
    Set-Valued and Variational Analysis, 2022, 30 : 207 - 231
  • [4] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Frassu, Silvia
    Rocha, Eugenio M.
    Staicu, Vasile
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (01) : 207 - 231
  • [5] Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian
    Jhaveri, Yash
    Neumayer, Robin
    ADVANCES IN MATHEMATICS, 2017, 311 : 748 - 795
  • [6] REGULARITY OF WEAK SOLUTION TO P-LAPLACIAN WITH MEASURABLE COEFFICIENT
    周树清
    王远弟
    文海英
    Annals of Differential Equations, 2003, (01) : 118 - 125
  • [7] Higher Holder regularity for the fractional p-Laplacian in the superquadratic case
    Brasco, Lorenzo
    Lindgren, Erik
    Schikorra, Armin
    ADVANCES IN MATHEMATICS, 2018, 338 : 782 - 846
  • [8] HIGHER REGULARITY OF SOLUTIONS TO THE SINGULAR p-LAPLACIAN PARABOLIC SYSTEM
    Crispo, F.
    Maremonti, P.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2013, 18 (9-10) : 849 - 894
  • [9] Regularity results of the thin obstacle problem for the p(x)-Laplacian
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Oh, Jehan
    Park, Jinwan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) : 496 - 519
  • [10] Stability remarks to the obstacle problem for p-Laplacian type equations
    José Francisco Rodrigues
    Calculus of Variations and Partial Differential Equations, 2005, 23 : 51 - 65