The pattern of mRNA expression for liver-specific proteins and liver-enriched transcription factors was studied in two models of facultative gut epithelial progenitor cells activation: D-galactosamine (GalN)-induced liver injury and dietary copper depletion leading to pancreatic acinar atrophy. After 5 weeks of copper deficiency (CuD), pancreatic acini of Fischer 344 rats underwent atrophy, associated with intense proliferation of small ductlike cells with oval-shaped nuclei. These cells resemble morphologically epithelial progenitor cells of the liver that proliferate after GalN administration. Activated pancreatic epithelial cells express mRNAs for liver-specific genes normally expressed in fetal liver, including alpha-fetoprotein, albumin, alpha-1 antitrypsin, glucose-6-phosphatase, and others, but not genes that are turned on after birth such as serine dehydratase, tyrosine aminotransferase, and multidrug resistance gene-1b. The express mRNAs for liver-enriched transcription factors including HNF-1 alpha, HNF-3 beta and gamma, HNF-4, and members of the CCAAT-enhancer binding protein (C/EBP) family. The only mRNA for a liver-enriched transcription factor not detected in the pancreas of CuD animals was HNF-3 alpha Expression of HNF-3 alpha, beta, and gamma, and C/EBP-beta mRNA was highly activated in proliferating liver epithelial cells on days 2 and 3 after GalN injury. Increased expression of C/EBP-delta was observed first in the liver on day 1 after GalN administration and in the pancreas at 4 weeks after initiating CuD. We suggest that C/EBP-delta could be involved in the initial activation of epithelial progenitor cells and that HNF-3 alpha, beta, and gamma, and C/EBP-beta might participate in their maturation. We conclude further that pancreatic epithelial progenitor cells undertake differentiation through the hepatocyte lineage but cannot complete the differentiation program within the pancreatic milieu.