Ropes on linear subspaces of a projective space

被引:0
|
作者
Ballico, Edoardo [1 ]
Notari, Roberto [2 ]
机构
[1] Trent Univ, Dipartmento Matemat, I-38050 Trento, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
来源
NOTE DI MATEMATICA | 2006年 / 26卷 / 01期
关键词
ropes; extensions; vector bundles on projective spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study good ropes supported by linear spaces of dimension >= 2. At first, we show that these schemes have some nice properties (for example, they all are locally Cohen-Macaulay), then we investigate the problem of extending a rope supported by a line to a good rope supported by a linear space of dimension >= 2. In particular, when the linear space is a plane, we study the problem of extending a rope supported by a line to a good rope with stable conormal bundle.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [1] Ropes in projective space
    Migliore, JC
    Peterson, C
    Pitteloud, Y
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (02): : 251 - 278
  • [2] MARKING OF PROJECTIVE SUBSPACES IN COMPLEX PROJECTIVE SPACE ACCORDING TO THEIR GEODATICS
    NOMIZU, K
    MATHEMATISCHE ZEITSCHRIFT, 1974, 137 (02) : 147 - 150
  • [3] BLOCKING SETS AND SKEW SUBSPACES OF PROJECTIVE-SPACE
    BRUEN, AA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03): : 628 - 630
  • [4] PROJECTIVE-MANIFOLDS CONTAINING LARGE LINEAR-SUBSPACES
    ANDREATTA, M
    BALLICO, E
    WISNIEWSKI, J
    LECTURE NOTES IN MATHEMATICS, 1992, 1515 : 1 - 14
  • [5] BAER SUBSPACES IN THE N-DIMENSIONAL PROJECTIVE-SPACE
    SVED, M
    LECTURE NOTES IN MATHEMATICS, 1983, 1036 : 375 - 391
  • [6] A CHARACTERIZATION OF THE GRASSMANN SPACE REPRESENTING THE TWO-DIMENSIONAL SUBSPACES OF A PROJECTIVE-SPACE
    BIONDI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1987, 1B (03): : 713 - 727
  • [7] Linear systems and quotients of projective space
    Kumar, C
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 152 - 160
  • [8] Multiple structures with arbitrarily large projective dimension supported on linear subspaces
    Huneke, Craig
    Mantero, Paolo
    McCullough, Jason
    Seceleanu, Alexandra
    JOURNAL OF ALGEBRA, 2016, 447 : 183 - 205
  • [9] Linear Diophantine Fuzzy Subspaces of a Vector Space
    Al-Tahan, Madeleine
    Hoskova-Mayerova, Sarka
    Al-Kaseasbeh, Saba
    Tahhan, Suha Ali
    MATHEMATICS, 2023, 11 (03)
  • [10] Projective Systems Whose Support is the Union of Two Linear Subspaces with Nonempty Intersection
    E. J. Cheon
    S. J. Kim
    Applicable Algebra in Engineering, Communication and Computing, 2006, 17 : 303 - 313