LIGHT-SCATTERING PROPERTIES OF SPHEROIDAL PARTICLES

被引:166
作者
ASANO, S
机构
[1] NASA Goddard Space Flight Center, Institute for Space Studies, New York, NY
来源
APPLIED OPTICS | 1979年 / 18卷 / 05期
关键词
D O I
10.1364/AO.18.000712
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light scattering characteristics of spheroidal particles are studied for a wide range of particle parameters and orientations. The method of computation is based on the scattering theory for a homogeneous spheroid developed by us, and the calculation is extended to fairly large spheroidal particles of a size parameter up to 30. Effects of the particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are investigated and interpreted physically. The scattering properties of prolate and oblate spheroids with incidence parallel to the rotation axis constitute the extremes. The prolate spheroids at parallel incidence have steep and high resonance maxima in the scattering efficiency factors and broad and low forwardscattering peaks in the intensity functions; on the other hand, the oblate spheroids at parallel incidence have broad and low resonance maxima and sharp and high forwardscattering peaks. With an increase of the incidence angle, the scattering behavior of prolate spheroids approaches that of oblate spheroids at parallel incidence and vice versa. It is shown that, for oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder. Effects of absorption on the extinction efficiency factors and scattering intensity functions are examined. Some problems in numerical calculation of the spheroidal wave functions and the infinite series solutions are discussed. © 1979 Optical Society of America.
引用
收藏
页码:712 / 723
页数:12
相关论文
共 32 条
[1]   LIGHT-SCATTERING BY A SPHEROIDAL PARTICLE [J].
ASANO, S ;
YAMAMOTO, G .
APPLIED OPTICS, 1975, 14 (01) :29-49
[2]   SCATTERING OF ELECTROMAGNETIC-WAVES BY ARBITRARILY SHAPED DIELECTRIC BODIES [J].
BARBER, P ;
YEH, C .
APPLIED OPTICS, 1975, 14 (12) :2864-2872
[3]   RESONANCE ELECTROMAGNETIC ABSORPTION BY NONSPHERICAL DIELECTRIC OBJECTS [J].
BARBER, PW .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1977, 25 (05) :373-381
[4]   RAYLEIGH-GANS-DEBYE APPLICABILITY TO SCATTERING BY NONSPHERICAL PARTICLES [J].
BARBER, PW ;
WANG, DS .
APPLIED OPTICS, 1978, 17 (05) :797-803
[5]   ON SPHEROIDAL WAVE FUNCTIONS OF ORDER ZERO [J].
BOUWKAMP, CJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1947, 26 (02) :79-92
[6]   MIE THEORY AND GLORY [J].
BRYANT, HC ;
COX, AJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1966, 56 (11) :1529-&
[7]  
CHANG C, 1966, USCEE166 U SO CAL DE
[8]   PARTIAL-WAVE RESONANCES AND RIPPLE STRUCTURE IN MIE NORMALIZED EXTINCTION CROSS-SECTION [J].
CHYLEK, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) :285-287
[9]   DEPOLARIZATION OF ELECTROMAGNETIC-RADIATION SCATTERED BY NONSPHERICAL PARTICLES [J].
CHYLEK, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (02) :175-178
[10]   OPTICAL BACK SCATTERING FROM SINGLE WATER DROPLETS [J].
FAHLEN, TS ;
BRYANT, HC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (03) :304-&