ANALYSIS AND SIMULATION OF THE QUANTUM WELL INJECTION TRANSIT-TIME DIODE

被引:13
|
作者
SONG, I
PAN, DS
机构
[1] Univ of California, Los Angeles, CA,, USA
关键词
Semiconductor Devices; Transit Time--Modeling;
D O I
10.1109/16.8807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The quantum-well injection transit time (QWITT) diode is simulated for two different injection phase angles (90° and 270°) at 60, 90, 200, and 300 GHz. Quantitative analysis of the output power and efficiency is carried out by including the velocity transient effect, the diffusion effect, and the carrier space-charge effect. The diffusion effect and the carrier space-charge effect degrade the output power and efficiency of the device. The velocity transient effect enhances the device performance for a 270° injection phase mode, but it renders the device useless for a 90° injection phase mode. In comparison with other microwave devices, a simple QWITT diode is a very promising device for millimeter-wave frequency application when it is used with a 270° injection phase angle. This is due to fast intrinsic frequency response time and extremely localized carrier injection mechanism as well as high transient velocity at a small distance. Because of the good efficiency of the QWITT diode, it is feasible to increase output power by integration of many QWITT diodes.
引用
收藏
页码:2315 / 2322
页数:8
相关论文
共 50 条