STABILITY OF A CANONICAL SYSTEM WITH 2 DEGREES OF FREEDOM IN PRESENCE OF RESONANCE

被引:0
|
作者
MARKEEV, AP
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:766 / &
相关论文
共 50 条
  • [1] Transcendental Case in Stability Problem of Hamiltonian System with Two Degrees of Freedom in Presence of First Order Resonance
    Bardin, Boris S.
    Maciejewski, Andrzej J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2013, 12 (01) : 207 - 216
  • [2] Transcendental Case in Stability Problem of Hamiltonian System with Two Degrees of Freedom in Presence of First Order Resonance
    Boris S. Bardin
    Andrzej J. Maciejewski
    Qualitative Theory of Dynamical Systems, 2013, 12 : 207 - 216
  • [3] RESONANCE DEGREES OF FREEDOM IN THE 2-NUCLEON SYSTEM
    NIEPHAUS, GH
    GARI, M
    SOMMER, B
    PHYSICAL REVIEW C, 1979, 20 (03): : 1096 - 1111
  • [4] ON STABILITY OF A NONAUTONOMOUS HAMILTONIAN SYSTEM WITH 2 DEGREES OF FREEDOM
    MARKEEV, AP
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1969, 33 (03): : 550 - &
  • [5] Canonical Conditions for K/2 Degrees of Freedom
    Stotz, David
    Jafar, Syed Ali
    Bolcskei, Helmut
    Shamai , Shlomo
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1292 - 1296
  • [6] Canonical Conditions for K/2 Degrees of Freedom
    Guel, Recep
    Stotz, David
    Jafar, Syed Ali
    Boelcskei, Helmut
    Shamai , Shlomo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1716 - 1730
  • [7] A RESONANCE PROBLEM OF 2 DEGREES OF FREEDOM
    MOORE, P
    CELESTIAL MECHANICS, 1983, 30 (01): : 31 - 47
  • [8] CANONICAL DECOUPLING OF DIFFERENT DEGREES OF FREEDOM FOR A 2-LEVEL SYSTEM COUPLED TO PHONONS
    BENIVEGNA, G
    MESSINA, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12): : L453 - L458
  • [9] COMBINATION AND INTERNAL RESONANCE IN A NONLINEAR 2-DEGREES-OF-FREEDOM SYSTEM
    ASMIS, KG
    TSO, WK
    JOURNAL OF APPLIED MECHANICS, 1972, 39 (03) : 832 - &
  • [10] STABILITY OF AN AUTONOMOUS HAMILTONIAN SYSTEM WITH 2-DEGREES OF FREEDOM UNDER 1ST-ORDER RESONANCE
    SOKOLSKII, AG
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1977, 41 (01): : 20 - 28